

सीएसआईआर की संगठनात्मक संरचना

विषय-सूची

			पृष्ठ संख्या	
	कार्यस	ार	I	
	संसाध	न आधार और कार्यनिष्पादन सूचक		
1.0	विज्ञान	ा एवं प्रौद्योगिकी योगदा न		
	1.1	जीव विज्ञान	1	
	1.2	रसायन विज्ञान	26	
	1.3	इंजीनियरी विज्ञान	33	
	1.4	सूचना विज्ञान	56	
	1.5	भौतिक विज्ञान	57	
	1.6	सामाजिक लाभार्थ एसएंडटी अंतराक्षेप	67	
2.0	केंद्रीय	प्रबंधन क्रियाकलाप		
	2.1	माननीय प्रधान मंत्री का सीएसआईआर के लिए संदेश	75	
	2.2	सीएसआईआर स्थापना दिवस	75	
3.0	मुख्या	लय की गतिविधियां		
	3.1	योजना एवं निष्पादन प्रभाग (पीपीडी)	83	
	3.2	मानव संसाधन विकास समूह (एचआरडीजी)	86	
	3.3	अंतर्राष्ट्रीय विज्ञान एवं प्रौद्योगिकी कार्य निदेशालय (इस्टैड)	89	
	3.4	बौद्धिक संपदा संरक्षण इकाई (आईपीयू)	92	
	3.5	विज्ञान प्रचार-प्रसार एकक (यूएसडी)	92	
	3.6	मानव संसाधन विकास केन्द्र (एचआरडीसी)	93	
	3.7	भर्ती एवं मूल्यांकन बोर्ड (आरएबी)	94	
	3.8	परंपरागत ज्ञान डिजिटल लाइब्रेरी (टीकेडीएल)	95	
4.0	तारीख	ावा र	98	
संलग्न	क			
I	पुरस्क	ार एवं मान्यता	A-1	
II	सीएसआईआर पेटेन्टों के फाइल किए गए आवेदन एवं स्वीकृत पेटेन्ट		A-4	
∐क	प्रदत्त विदेशी पेटेंट		A-6	
III	क्षेत्रवार अनुसंधान प्रकाशन		A-41	
IV	सीए	सआईआर सोसाइटी के सदस्य (सीएसआईआर की शासी निकाय के सदस्यों सहित)	A-58	
V	नियंत्रव	p और महालेखा परीक्षक के लंबित पैरा का ब्यौरा	A-62	
VI	अनुमोदित परियोजनाओं की सूची			
परिषद	के प्रति	ष्ठान	A-70	

2014-15

कार्यसार

पृष्ठभूमि

- वर्ष 1942 में स्थापित वैज्ञानिक तथा औद्योगिक अनुसंधान परिषद (सीएसआईआर) विज्ञान एवं प्रौद्योगिकी के विविध क्षेत्रों में अपने अग्रणी अनुसंधान एवं विकास ज्ञानाधार के लिए अभिज्ञात है। संपूर्ण भारत में मौजूदगी के चलते सीएसआईआर का 38 राष्ट्रीय प्रयोगशालाओं, 39 दूरस्थ केन्द्रों और 5 यूनिटों का सक्रिय नेटवर्क है। सीएसआईआर की अनुसंधान एवं विकास विशेषज्ञता तथा अनुभव लगभग 4000 सिक्रय वैज्ञानिकों में समाहित हैं जिन्हें लगभग 6200 वैज्ञानिक एवं तकनीकी कार्मिकों की सहायता प्राप्त है।
- सीएसआईआर रेडियो और अंतरिक्ष भौतिकी, महासागर विज्ञान, भूभौतिकी, रसायन, औषध, जीनोमिकी, जैवप्रौद्योगिकी और नैनोप्रौद्योगिकी से खनन, वैमानिकी, उपकरणन, पर्यावरणीय इंजीनियरी तथा सूचना प्रौद्योगिकी तक के विज्ञान एवं प्रौद्योगिकी के व्यापक विषयों व क्षेत्रों में कार्य कर रहा है। यह सामाजिक प्रयासों से जुड़े अनेक क्षेत्रों में महत्वपूर्ण प्रौद्योगिकीय अंतराक्षेप उपलब्ध कराता है जिसमें पर्यावरण, स्वास्थ्य, पेयजल, खाद्य, आवास,ऊर्जा, कृषि एवं गैर-कृषि क्षेत्र शामिल हैं। सीएसआईआर द्रव्य माप मानकों, दूरी, समय, तापमान, करंट आदि के लिए राष्ट्र का संरक्षक है। सीएसआईआर माइक्रोबियल टाइप कल्चर कलेक्शन (एमटीसीसी) और जीन बैंक का रखरखाव करता है। सीएसआईआर वर्तमान में प्रौद्योगिकी के चयनित क्षेत्रों में विज्ञान एवं प्रौद्योगिकी के सृजन का लक्ष्य बनाकर अपने सुदृढ़ पेटेंट पोर्टफोलियों को बनाए हुए है।
- सीएसआईआर ने विज्ञान और उन्नत ज्ञान के क्षेत्रों में अग्रणी कार्य किया है। वर्ष 2014 में सीएसआईआर ने प्रति शोधपत्र 2.97 के औसत प्रभाव कारक सहित साइंस जर्नलों में 5824 शोधपत्र प्रकाशित किए।
- वैज्ञानिक एवं तकनीकी मानव संसाधन विकास में सीएसआईआर की भूमिका महत्वपूर्ण है। यह रिसर्च स्कॉलर्स का पोषण करता है और जूनियर रिसर्च फैलोशिप्स (जेआरएफ), सीनियर रिसर्च फैलोशिप्स, (एसआरएफ) रिसर्च एसोसिएट्स आदि नामक फैलोशिपों के माध्यम से इनको सहायता प्रदान करता है। यह सार्वजनिक रूप से वित्तपोषित संस्थानों को बाह्य अनुसंधान निधियां भी उपलब्ध कराता है।

डॉ. हर्षवर्धन, माननीय विज्ञान एवं प्रौद्योगिकी तथा पृथ्वी विज्ञान मंत्री ने सीएसआईआर के उपाध्यक्ष का पदभार संभाला

डॉ. हर्षवर्धन, माननीय विज्ञान एवं प्रौद्योगिकी तथा पृथ्वी विज्ञान मंत्री ने 10 नवंबर, 2014 को सीएसआईआर के उपाध्यक्ष का पदभार संभाला। ईएनटी सर्जन डॉ. हर्षवर्धन ने वर्ष 1979 में शल्यिचिकित्सा में स्नातक और 1983 में औटोरिनोलारिंगोलॉजी में शल्य चिकित्सा में गणेश शंकर विद्यार्थी मेमोरियल मेडिकल कॉलेज, कानपुर से परास्नातक किया।

पदभार ग्रहण करने के शीघ्र बाद, माननीय मंत्री जी ने समान्यतः सीएसआईआर और विशेषतः इसकी घटक प्रयोगशालाओं की अनुसंधान एवं विकास संबंधी गतिविधियों के बारे में जानने हेतु अत्यधिक रुचि ली। इसी उद्देश्य से वह सीएसआईआर की प्रयोगशालाओं के वैज्ञानिकों और स्टॉफ से बातचीत करना चाहते थे ओर संगठन की आन्तरिक गहनता को समझना चाहते थे। माननीय मंत्री जी ने पदभार ग्रहण करने के चार दिनों के भीतर सीएसईआर-उत्तर-पूर्व विज्ञान तथा प्रौद्योगिकी संस्थान (सीएसआईआर-एनईआईएसटी) का दौरा किया।

डॉ. हर्षवर्धन, माननीय मंत्री विज्ञान और प्रौद्योगिकी तथा पृथ्वी विज्ञान ने उपाध्यक्ष, सीएसआईआर का कार्यभार ग्रहण किया

2014-15

डॉ. हर्षवर्धन, माननीय विज्ञान एवं प्रौद्योगिकी तथा पृथ्वी विज्ञान मंत्री एवं उपाध्यक्ष, सीएसआईआऱ की प्रयोगशालाओं का दौरा

इस वर्ष में, डॉ. हर्षवर्धन ने सीएसआईआर की सात प्रयोगशालाओं यथा- सीएसआईआर-उत्तर-पूर्व विज्ञान एवं प्रौद्योगिकी संस्थान (सीएसआईआर-एनईआईएसटी, 15 नवंबर, 2004) सीएसआईआर-राष्ट्रीय समुद्र विज्ञान संस्थान (सीएसआईआर-एनआईओ, 1 जनवरी 2015), सीएसआई-कोशिकीय एवं आणविक जीव विज्ञान केंद्र (सीएसआईआर-सीसीएमबी) तथा सीएसआईआर- भारतीय रासायनिक प्रौद्योगिकी संस्थान (सीएसआईआर-आईआईसीटी, 8 जनवरी, 2015), सीएसआईआर-केंद्रीय चर्म अनुसंधान संस्थान (सीएसआईआर-सीएलआईआर-सीएलआईआर-एसईआरसी, 23 मार्च, 2015) एवं सीएसआईआर-राष्ट्रीय सीएसआईआर-संरचनात्मक अभीयांत्रिकी अनुसंधान संस्थान केंद्र (सीएसआईआर-एसईआरसी, 23 मार्च, 2015) एवं सीएसआईआर-राष्ट्रीय भौतक प्रयोगशाला (सीएसआईआर-एनपीएल 27 मार्च 2015) का दौरा किया। प्रयोगशालाओं के भ्रमण के दौरान माननीय मंत्री एवं उपाध्यक्ष, सीएसआईआर ने देश में सामाजिक आर्थिक विकास हेतु राष्ट्रीय नवोन्मेष प्रणाली के लिए अत्याधुनिक ज्ञानाधार उपलब्ध कराने के अतिरिक्त उद्योग एवं आम जनता द्वारा सामना की जा रही विशिष्ट समस्याओं का समाधान उपलब्ध कराने के लिए प्रेरित किया। उन्होंने कहा कि सीएसआईआर अनोखी नवोन्मेष प्रणाली के रूप मे उभरा है और वर्षों से इसके योगदान प्रशंसनीय हैं।

डॉ. हर्षवर्धन, माननीय विज्ञान एवं प्रौद्योगिकी तथा पृथ्वी विज्ञान मंत्री एवं उपाध्यक्ष, सीएसआईआर ने सीएसआईआर-एनईआईएसटी के दौरे के समय कहा कि प्रधानमंत्री नरेंद्र मोदी के विजन मेक इन इंडिया का क्रियानवयन करने में भारतीय वैज्ञानिकों एवं प्रौद्योगिकविदों की भूमिका महत्वपूर्ण है। उन्होंने कहा कि वैज्ञानिक ऊर्जा को शानदार प्रकटन के क्रियानवयन की आवश्यकता है। नरेंद्र मोदी सरकार भारतीय उद्योग को प्रतिस्पर्धात्मक तीक्ष्णता से इसे वैश्विक अर्थव्यवस्था में दिशा देगी। वैज्ञानिक तथा औद्योगिक अनुसंधान परिषद् (सीएसआईआर) की प्रयोगशालाओं के राष्ट्रव्यापी नेटवर्क को भी स्थानीय समुदायों को सक्षम बनाने और हर जगह उनका जीवन स्तर सुधारने के लिए समाधान देने की आवश्यकता होगी। उन्होंने कहा कि सीएसआईआर-एनईआईएसटी के वैज्ञानिक इस से अवगत हैं कि जलवायु परिवर्तन से फसलों का घटना विज्ञान, नए कृषि पीड़कों का उद्भमन और खेती में नए खरपतवारों का फैलाव प्रभावित होता है। वैज्ञानिक पहले से ही इस क्षेत्र में प्रशंसनीय कार्य कर रहे हैं। डॉ. हर्ष वर्धन ने कहा कि मैं यहां आपको प्रधानमंत्री का संदेश देने के लिए आया हूं कि हम एक सशक्त तथा विकसित भारत चाहते हैं – लेकिन पर्यावरण की कीमत पर नहीं। भारत का उत्तर-भारत जैवविविधता, जननिक स्रोत, भूजल तथा अनिगनत अन्य खजानों का सबसे बड़ा स्रोत है। डॉ. हर्ष वर्धन ने कहा कि तदनुसार मैंने एनईआईएसटी को अनुदेश दिया है कि वह अपनी सुरक्षा के लिए कार्यक्रमों का विकास करें।

डॉ. हर्ष वर्धन, माननीय विज्ञान एवं प्रौद्योगिकी तथा पृथ्वी विज्ञान मंत्री एवं उपाध्यक्ष, सीएसआईआर ने दिनांक 1जनवरी 2015 को सीएसआईआर एनआईओ के स्वर्ण जयंती वर्ष समारोह के शुभारंभ पर कहा कि सागर में असीमित, संधारणीय संसाधनों का विभव है। उन्होंने कहा कि विज्ञान ने हमें सिखाया है कि सभी चीजें महासागर से शुरू हुई हैं और यह महासागर ही है जिस पर हमारा भविष्य निर्भर है। उन्होंने संबोधन के दौरान समुद्र विज्ञान की महत्ता पर बल दिया। राष्ट्र को महासागर में पड़े जैव सिक्रिय पदार्थों का अधिक समय तक वाणिज्यीकरण करने हेतु प्रयास करना चाहिए क्योंकि इनमें नई औषधियों तथा भेषजों के बढ़ने की अपार संभावना है। उन्होंने यह भी कहा कि हमारा भविष्य समेकित समुद्री परिस्थितिविज्ञान और मत्स्य पालन संबंधी अनुसंधान के सहयोग में निहित है। डॉ. हर्ष वर्धन ने हमारे महासागर तथा सागर को सुरक्षित तथा साफ रखने की महत्ता पर भी बल दिया।

डॉ. हर्ष वर्धन, माननीय विज्ञान एवं प्रौद्योगिकी तथा पृथ्वी विज्ञान मंत्री एवं उपाध्यक्ष, सीएसआईआर ने सीएसआईआर-सीएलआरआई के अपने भ्रमण के दौरान चर्म क्षेत्र हेतु वैज्ञानिक प्रक्रियाओं की महत्वपूर्ण खोज की घोषणा की। उन्होंने कहा कि "पैराडाइम शिफ्ट" इस संस्थान के वैज्ञानिकों के प्रयास का परिणाम है। सीएलआईआई द्वारा विकसित एक नवीन, जैव निम्नीय परिक्षेपण कर्मक सामान्य प्रयोग के ठीक आधे चर्म की क्रोमटैनिंग को सक्षम बनाता है। इससे केवल भारतीय चर्म क्षेत्र में प्रतिदिन 15 मिलियन लीटर पानी की बचत होती है- और यदि यह क्रान्तिकारी प्रौद्योगिकी वैश्विक स्तर पर लागू कर दी जाय तो अनुमानतः 200 मिलियन लीटर प्रतिदिन पानी बचत होगी। सीएलआईआरआई वौरे के बाद उन्होंने कहा कि यह विकास बहिःस्राव समस्या की उपशमन संबंधी प्रक्रिया, कर्टेलिंग प्रक्रिया संबंधी उपाय, बहुत अधिक जल संरक्षण, समय की बचत एवं मूल्य बचत संबंधी लाभों पर लिक्षित है। उन्होंने यह भी बताया कि सीएलआरआई उस सक्षम फाइबर ओपनिंग प्रोसेस को 30 मिनट में पूरा करने के लिए एन्जाइमी अंतःक्षेप का पालन करने में सफल हुआ है जिसे अब तक 72 घंटे का समय लगता था। यह प्रधानमंत्री के एजेंडा मेक इन इंडिया के लिए एक अच्छी खबर है। डॉ. हर्ष वर्धन ने कहा कि हमारा चर्म और चर्म सामान उद्योग अनोखी प्रतिस्पर्धात्मकता के कगार पर है। माननीय मंत्रीजी ने शरद ऋत् 16/17 मौसम (इस मौसम के अठारह माह पहले) हेतु एमओडीईयूआरओपी कलर कार्ड की पहली प्रति जारी की।

डॉ. हर्ष वर्धन, माननीय विज्ञान एवं प्रौद्योगिकी तथा पृथ्वी विज्ञान मंत्री एवं उपाध्यक्ष, सीएसआईआर ने अपने सीएसआईआर-एसईआरसी भ्रमण के दौरान वैज्ञानिकों और प्रौद्योगिकीविदों से कम लागत वाले भवन तथा संरचनात्मक मटीरियल का विकास करने के काम पर जोर दिया क्योंकि उन्हें माननीय प्रधानमंत्री नरेंद्र मोदी के प्रत्येक व्यक्ति को छत मुहैया कराने के सपने को 2022 तक क्रियान्वयन करने के गंभीर दायित्व का निर्वहन करना है। उन्होंने कहा कि हमें पहले से कहीं अधिक सस्ती प्रौद्योगिकियों की जरूरत है ताकि मांग आपूर्ति की कमी को त्विरत रूप से भरा जा सके। पहली

2014-15

बार प्रधानमंत्री ने प्रत्येक परिवार के सिर पर छत उपलब्ध कराने के लिए सीमा रेखा निर्धारित की है। सीएसआईआर-एसईआरसी द्वारा विकसित निर्माण प्रौद्योगिकियों, उच्च विज्ञान उत्पाद एवं विशेषीकृत सेवाएं प्रधानमंत्री की परियोजना के लिए एक आवश्यक घटक विकसित करेंगी। उन्होंने कहा कि वैज्ञानिक समुदाय से मेरा अनुरोध है कि वे वहनीयता के साथ सुरक्षा का सुनिश्चयन करें। सीएसआईआर-एसईआरसी द्वारा पिछले 50 वर्षों में अर्जित की गई अनेक प्रतिष्ठाओं को याद करते हुए डॉ. हर्ष वर्धन ने पालक स्ट्रेट पर पमेबन रेलवे ब्रिज के उस नैविगेशनल पैन की पुनः संरचना की 2007 की उपलब्धि की सराहना की जो रामेश्वरम को भारत की मुख्य भूमि से जोड़ता है। उन्होंने कहा कि यह एक ऐसी परियोजना है जिसका अनुकरण पूरे विश्व में होनी चाहिए। उन्होंने कहा कि यह पुल एक सदी से भी अधिक पुराना है लेकिन चट्टान की तरह अडिग है। माननीय मंत्रीजी ने जोर दिया कि वैज्ञानिक पिछली उपलब्धियों से संतुष्ट होकर न बैठें बल्कि लगातार कुछ विशेष सोचने की कोशिश करें। उनका लक्ष्य नए अनुसंधान क्षेत्रों को जारी रखने का होना चाहिए जिससे देश की आवश्यकताओं को पूरा किया जा सके और इस संस्थान की गतिविधियों के चयनित प्रौद्योगिकी क्षेत्रों में उन्हें आगे रखा जा सके। इस अवसर पर बुनियादी ढ़ांचे से जुड़े बहुत से उद्योगपित मौजूद थे। उनमें श्री डी आदिनारायन राव (बीजीआर एनर्जी सिस्टम लिमि.), श्री एसएस मणि (बीएचईएल, रानीपेट), श्री विवेक चारी (टीएजी कारपोरेशन), श्री एस रविशंकर (अदानी इंफ्रा इंडिया), श्री एस राम मोहन (एनएलसी न्यूवेली) तथा श्री डी श्री निवास राव (हिंदुस्तान शिपयार्ड लिमि.) शामिल थे।

सीएसआईआर-एसईआऱसी के अपने भ्रमण के दौरान उन्होंने लागत-प्रभावी प्रौद्योगिकियों तथा उत्पादों पर और अधिक जोर देने का निदेश दिया। उन्होंने भविष्य की मांगों हेतु उपयुक्त प्रौद्योगिकियों की आधुनिकीकरण की आवश्यकता पर भी बल दिया। माननीय मंत्री जी ने इच्छा व्यक्त की कि प्रौद्योगिकीय नवोन्मेषों के परिणाम उपयुक्त रूप से निकाले जायें ताकि लोगों तक ये लाभ कम से कम संभाव्य समय में पहुंच सकें।

अपने भ्रमण के दौरान उन्हों<mark>ने माननीय प्रधानमंत्री</mark> एवं अध्यक्ष, सीएसआईआऱ के संदेश <mark>को व्यक्त किया ''हम</mark> सुदृढ़ और विकसित भारत चाहते हैं-लेकिन पर्यावरण की कीमत पर नहीं।''

डॉ. हर्ष वर्धन, माननीय विज्ञान एवं प्रौद्योगिकी तथा पृथ्वी विज्ञान मंत्री एवं उपाध्यक्ष, सीएसआईआर ने अपने सीएसआईआर-एनपीएल के दौरे के दौरान यह ध्यान दिलाया कि विदेश में आज प्रत्येक क्षेत्र में कार्य करने वाले सर्वश्रेष्ठ वैज्ञानिक भारतीय हैं। इससे मालूम होता है कि हम अपने देश की नवोन्मेषी सूझबूझ तथा योग्यताओं का उपयोग अपने श्रेष्ठ अतीत से अधिक अपना भविष्य उज्ज्वल बनाने के कार्य हेतु कर सकते हैं। उन्होंने "एपेक्स मेट्रोलॉजी लैबोरेट्री" को राष्ट्र को समर्पित किया। उन्होंने कहा हमारे प्रधानमंत्री श्री नरेंद्र मोदी का भी यह सपना है कि हमारे देश की 65% जनसंख्या जो 35 वर्ष से कम की है, की बौद्धिक सूझबूझ और नवोन्मेषी योग्यताओं का उपयोग अपने देश को ज्ञान समाज में परिवर्तित करने के लिए करें। इस अवसर पर विज्ञान एवं प्रौद्योगिकी तथा पृथ्वी विज्ञान राज्य मंत्री श्री वाई एस चौदरी ने कहा कि हमें छात्रों को ऐसी प्रयोगशालाओं के भ्रमण की अनुमित देकर, प्रतिस्पर्धा के माध्यम से उनका चयन कर ऐसी प्रयोगशालाओं को और अधिक दृश्यमान बनाना चाहिए।

माननीय मंत्री एवं उपाध्यक्ष, सी<mark>एसआईआर सीएसआईआर-एनईआईएसटी के</mark> वैज्ञानिकों एवं स्टाफ को संबोधित करते हुए

माननीय मंत्री एवं <mark>उपाध्यक्ष, सीएसआई</mark>आऱ ने सीएसआईआऱ.-एनईआईएसटी के वैज्ञानिकों एवं स्टाफ से बातचीत करते हुए

2014-15

माननीय मंत्री एवं उपाध्यक्ष, सीएसआईआऱ सीएसआईआऱ-एनआईओ के वैज्ञानिकों एवं स्टाफ को संबोधित करते हुए

माननीय मंत्री एवं उपाध्यक्ष, सीएसआईआऱ को सीएसआईआऱ-एनआईओ की गतिविधियों के बारे में संक्षेप में बताया गया

माननीय मंत्री एवं उपाध्यक्ष, सीएसआईआर ने सीएसआईआर-सीएलआरआई के चर्म उत्पादों में अत्यधिक रुचि दिखाई

माननीय मंत्री एवं उपाध्यक्ष, सीएसआईआर सीएसआईआर-एसईआरसी की आगंतुक पुस्तिका में प्रेक्षण लिखते हुए

माननीय मंत्री एवं उपाध्यक्ष, सीएसआईआर और माननीय विज्ञान एवं प्रौद्योगिकी तथा माननीय मंत्री एवं उपाध्यक्ष, सीएसआईआर और माननीय विज्ञान एवं प्रौद्योगिकी तथा पृथ्वी विज्ञान मंत्री ने सीएसआईआर-एनपीएल का दौरा किया

पृथ्वी विज्ञान मंत्री ने सीएसआईआर-एनपीएल का दौरा किया

माननीय मंत्री एवं उपाध्यक्ष, सीएसआईआर, सीएसआईआर-एनपीएल के परिसर में वृक्षारोपण करते हुए

माननीय विज्ञान एवं प्रौद्योगिकी तथा पृथ्वी विज्ञान मंत्री सीएसआईआर-एनपीएल के परिसर में वृक्षारोपण करते हुए

2014-15

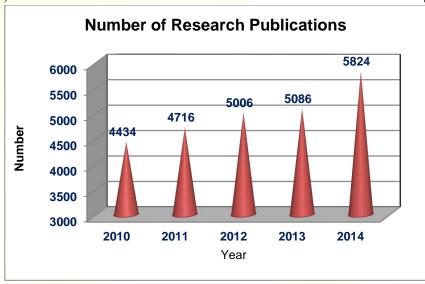
माननीय मंत्री एवं उपाध्यक्ष, सीएसआईआर और माननीय विज्ञान एवं प्रौद्योगिकी तथा पृथ्वी विज्ञान मंत्री को सीएसआईआर-एनपीएल में प्रकाशिकी में अनुसंधान एवं विकासार्थ प्रायोगिक सेटअप के बारे में बताया गया

माननीय मंत्री एवं उपाध्यक्ष, सीएसआईआर और माननीय विज्ञान एवं प्रौद्योगिकी तथा पृथ्वी विज्ञान मंत्री को सीएसआईआर-एनपीएल में सीसियम फाउंटेन घड़ी के बारे में बताया गया।

माननीय श्री वाई सुजना चौदरी ने विज्ञान एवं प्रौद्योगिकी तथा पृथ्वी विज्ञान राज्य मंत्री का पद-भार संभाला

माननीय श्री वाई सुजना चौदरी ने 9 नवंबर, 2014 को विज्ञान एवं प्रौद्योगिकी तथा पृथ्वी विज्ञान राज्य मंत्री का पद-भार संभाला।

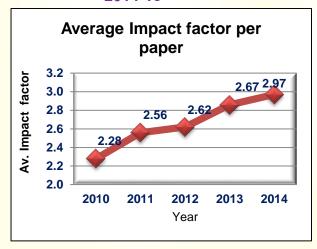
निष्पादकता-सार


सीएसआईआर ने नवोन्मेष केन्द्रित अपेक्षित ज्ञानाधार के योगदान से त्वरित तथा समावेशी समृद्धि प्राप्त करने के राष्ट्रीय प्रयास को सुगम बनाया है। ये प्रयास जीवन की गुणवत्ता सुधारने, नीरसता हटाने तथा लोगों की आय में वृद्धि करने के साथ सामाजिक आर्थिक विकास में संवर्धन करने हेतु अपेक्षित विज्ञान एवं प्रौद्योगिकी अंतराक्षेपो पर केंद्रित हैं। इस वर्ष के दौरान, सीएसआईआर की निष्पादकता बहुत प्रभावशाली रही जिसका सारांश नीचे दर्शाया गया है:

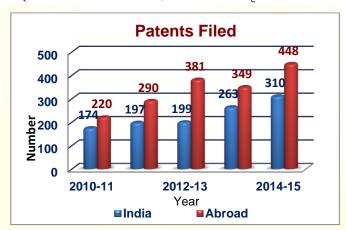
विश्व में सीएसआईआर का स्थान

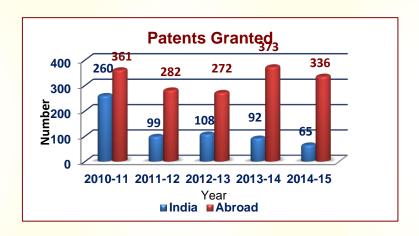
नया ज्ञान सृजन करने के संबं<mark>ध में सीएसआई</mark>आर विश्वभर में एक बेंच मार्क संगठन है। शि<mark>मागो इंस्टिट्यूश</mark>न्स रैंकिंग वर्ल्ड रिपोर्ट 2014 के अनुसार विश्व के 4851 संस्थानों में सीएसआईआर का 84वां स्थान है और शीर्षस्थ 100 अंतर्राष्ट्रीय संस्थानों में यह अकेला भारतीय संगठन है। एशिया में सीएसआईआर 17वें और देश में पहले स्थान पर है।

वैज्ञानिक उत्कृष्टता


वर्ष 2014 के दौरान सीएसआईआर ने ख्याति प्राप्त साइंस जर्नलों में 5824 शोध पत्र प्रकाशित किए हैं। सीएसआईआर प्रयोगशालाओं से सृजित ज्ञान को (2.97) के औसत प्रभाव कारक सहित प्रदर्शित किया गया हैं। निम्नांकित ग्राफ गत पांच वर्षों की शोध प्रवृति दर्शाते हैं।

अनुसंधान प्रकाशनों की संख्या


2014-15



प्रति शोध पत्र औसत प्रभावांक

बौद्धिक संपदा के माध्यम से मूल्य सृजन

सीएसआईआर ने वर्ष 2014-15 में विदेश में 448 पेटेंट और भारत में 310 पेटेंट फाइल किए और इसे विदेश में 336 पेटेंट्स और भारत में 65 पेटेंट्स प्रदान किए गए। निम्नांकित चार्ट्स में गत पांच वर्षों के दौरान फाइल किए गए और स्वीकृत पेटेंटों से संबंधित आंकड़े दिए गए हैं।

2014-15

वैज्ञानिक एवं तकनीकी मानव संसाधन का सृजन एवं पोषण

सीएसआईआर देश में उच्च योग्यता प्राप्त वैज्ञानिक एवं तकनीकी जनशक्ति का सृजन एवं पोषण करने में सफल रहा है। वर्तमान में यह लगभग 8500 िरसर्च फैलो, 2251 जूनियर रिसर्च फैलोशिप्स तथा 65 श्यामाप्रसाद मुखर्जी फैलोशिप्स प्रदान कर रहा है। सीएसआईआर विभिन्न विश्वविद्यालयों की 1000 से अधिक अनुसंधान योजनाओं को सहायता प्रदान कर रहा है।

कुछ महत्वपूर्ण उपलब्धियां

सीएसआईआर की इस मान्यता, कि देश में समावेशी नवोन्मेष से सामाजिक-आर्थिक वृद्धि और वैश्विक रूप से प्रतिस्पर्धी लाभ प्राप्त होगा, ने नवोन्मेष पर केन्द्रित अनुसंधान एवं विकास कार्यक्रम शुरू करके त्विरत तथा समावेशी समृद्धि प्राप्त करने के राष्ट्रीय प्रयास को सुगम बना दिया है। इस प्रकार सीएसआईआर एमएसएमई तथा आम लोगों सिहत राष्ट्र, इसके उद्योगों के लाभार्थ आवश्यक विज्ञान एवं प्रौद्योगिकी ज्ञानाधार उपलब्ध कराता रहा है। ये प्रयास जीवन की गुणवत्ता सुधारने, नीरसता हटाने तथा लोगों की आय में वृद्धि करने के साथ सामाजिक आर्थिक विकास में संवर्धन करने हेतु अपेक्षित विज्ञान एवं प्रौद्योगिकी अंतराक्षेपो पर केंद्रित हैं। सीएसआईआर द्वारा शुरू की गई ये परियोजनाएं महत्वपूर्ण ज्ञानाधार तथा देश के लिए विशिष्ट स्थान बनाने हेतु अत्यधिक महत्व तथा संभाव्यता वाले विज्ञान एवं प्रौद्योगिकी अंतराक्षेपों के सृजन में योगदान देती रही हैं।

प्रथम स्वदेश निर्मित अनुसंधान पोत 'सिंधु साधना' राष्ट्र को समर्पित

डॉ. जितेन्द्र सिंह, तत्कालीन उपाध्यक्ष, सीएसआईआर और माननीय राज्य मंत्री, विज्ञान एवं प्रौद्योगिकी मंत्रालय तथा पृथ्वी विज्ञान मंत्रालय (स्वतंत्र प्रभार), प्रधानमंत्री कार्यालय, लोक शिकायत एवं पेंशन, परमाणु ऊर्जा विभाग, अंतरिक्ष विभाग, ने प्रथम स्वदेश निर्मित बहुविषयी अनुसंधान पोत सिंधु साधना दिनांक 12 जुलाई, 2014 को राष्ट्र को समर्पित किया।

यह जहाज 80 मीटर लंबा और 17.6 मीटर चौड़ा है और इसमें 29 वैज्ञानिकों और 28 क्रू मेम्बर्स सहित 57 व्यक्ति आ सकते हैं। इस का डिजाइन 13.5 नोट्स की क्रूजिंग स्पीड के लिए किया गया है और यह 45 दिनों तक स्थिर रहता है। इस अनुसंधान पोत में 10 प्रयोगशालाएं हैं जो अत्याधुनिक उपकरणों से लैस हैं जिनसे अति महत्वपूर्ण डाटा और नमूना एकत्र करना सरल है। यह जहाज सिंगल बीम और मल्टी बीम इको सुराउंड्स, वाटर कॉलम और सब-बॉटम प्रोफाइलर, ग्रेवीमीटर, मैग्नेटोमीटर, एकॉस्टिक डॉपलर करंट प्रोफाइलर, कंडेक्टिविटी-टेम्प्रेचर-डेप्थ प्रोफाइलर ऑटोनोमस वैदर स्टेशन, एयर क्वालिटी मॉनीर्ट्स तथा सैम्पलिंग गियर्स यथा ए-फ्रेम, गामा फ्रेम और सपोर्टिंग क्रेन्स सहित डीप सी विचेज से ऑन-लाइन डाटा एकत्र करने और डाटा प्रोसेसिंग करने के लिए अनेक प्रयोगशालाओं से सज्जित है। यह पोत डायनेमिक पोजिशनिंग सिस्टम से भी सुसज्जित है जो 24 मीटर लंब सेडिमेंट कोर्स सहित नमूने के लिए एक बिन्दु पर रोक सकती है। यह निर्मित घाटों पर नियत तैनाती, दूरस्थ परिचालित यानों (आरओवी) को खींचने और ऑटोनोमस अंडरवॉटर व्हीकल्स (एयूवी) को भी सुगम बनाता है।

ब्रह्मोस कार्यक्रम में योगदान

सीएसआईआर-एनएएल ने विशेष रूप से ऐसे रणनीतिक क्षेत्र के लिए महत्वपूर्ण योगदान दिए हैं जिनसे सम्मान एवं गौरव दोनों प्राप्त हुए हैं। फ्राउड स्केलिंग सिद्धांतों के उपयोग से (M<0.3) विंड टनल की 1.5 मीटर न्यून गित से एनएएल के एसयू-30एमकेआई एयरक्राफ्ट मॉडल से स्टोर्स के ड्रॉप टैस्ट किए गए। इस अध्ययन ने अग्र एवं पश्च फिंस हेतु रिफ्लेक्शन सैटिंग एंगल्स सिहत उड़ान मैच की वास्तविक संख्याओं पर जारी स्टोर्स हेतु आदर्श स्थितियां उपलब्ध कराई। विकसित सॉफ्टवेयर से टाइम रिजॉल्ड डिसप्लेसमेंट, वैलोसिटी, एक्सीलेरेशन और यूलर एंगल्स की ट्रैकिंग की गई। इसके अतिरिक्त वायु गित की भारों को प्राप्त करने के लिए 0.6 मीटर ट्राइसोनिक विंड टनल में स्केल्ड आइसोलेटिड स्टोर मॉडल पर विंड टनल टैस्ट भी किए गए। इस स्टोर मॉडल को स्केल्ड एसयू-30एमकेआई एयरक्रॉफ्ट मॉडल से जोड़ा गया और 1.2 मीटर विंड टनल में पूर्ण विन्यास पर वायुगितिकी भार निर्धारित किए गए। कैरिज पोजिशन और एयरक्रॉफ्ट इंटरफेरेंस फ्लो फील्ड में अधिष्ठापन प्रभावों, स्टोर लोड्स का निर्धारण करने के लिए आक्रमण के विभिन्न कोणों पर मैच नम्बर रेंज 0.55 से 1.2 और साइडस्लिप में परीक्षण किए गए। इस प्रौद्योगिकी विकास की सफलता और संबंधित उत्कृष्ट योगदानों हेतु सीएसआईआर-एनएएल को ब्रह्मोस द्वारा "श्रेष्ठ प्रयोगशाला प्रस्कार 2014" प्रदान किया गया है। भारत के पूर्व राष्ट्रपित डॉ.

2014-15

ए.पी.जे. अब्दुल कलाम ने दिनां<mark>क 12 जून, 2014</mark> को नई दिल्ली में ब्रह्मोस दिवस समारो<mark>ह के दौरान सीएसआई</mark>आर-एनएएल को ''श्रेष्ठ प्रयोगशाला पुरस्कार 2014'' प्रदान किया।

दृष्टि-रनवे दृश्यता मापन प्रणाली

नागर विमानन क्षेत्र में योगदान के लिए सीएसआईआर-एनएएल ने भारतीय मौसम विज्ञान विभाग (आईएमडी), नई दिल्ली के सहयोग से विमानन सुरक्षा के क्षेत्र में एक मुख्य उपलब्धि हासिल की। सीएसआईआर-एनएएल द्वारा विकसित दृष्टि प्रणाली, रनवे दृश्यता मापन उपकरण के संयुक्त उत्पादनार्थ सहभागिता करार पर 20 मई, 2014 को हस्ताक्षर किए गए। इस समझौता ज्ञापन के तहत सीएसआईआर-एनएएल में रु.18 लाख की लागत की 70 प्रणालियों का निर्माण किया जा रहा है। देश के सभी हवाई अङ्डों पर यह प्रणाली अधिष्ठापित की जाएगी। प्रथम चरण में, सीएसआईआर-एनएएल को 20 प्रणालियों का आर्डर मिला है। देश के विभिन्न हवाई अङ्डों पर 20 दृष्टि प्रणालियों के अधिष्ठापन का प्रथम चरण प्रगति पर है। फरवरी, 2015 में, पाँच नई अभिकल्पित दृष्टि प्रणालियों का अधिष्ठापन तथा प्रत्यावर्तन इंदिरा गांधी अंतरराष्ट्रीय हवाई अङ्डा, नई दिल्ली पर किया गया है। यह हवाई अङ्डा देश का पहला हवाई अङ्डा है जो अपने तीनों रनवे पर इस स्वदेशी प्रणाली का प्रचालन कर रहा है।

पर्यावरणीय मॉनीटरन हेतु इलेक्ट्रॉनिक नोज

लुगदी और कागज उद्योग में खतरनाक गैसों को सूंघ कर पता लगाने के लिए सीएसआईआर-एनईईआरआई तथा सेंटर फॉर डेवलपमेंट ऑव एडवांस्ड कम्प्यूटिंग (सी-डैक) द्वारा संयुक्त रूप से इलेक्ट्रॉनिक नोज (ई-नोज) का विकास किया गया है। इलेक्ट्रॉनिक नोज भारत में विकसित की जाने वाली अपनी तरह की पहली प्रौद्योगिकी है। इसमें गंध के अणुओं को पहचानने के लिए इंटेलिजेंट सोफ्टवेयर का इस्तेमाल होता है। यह सुवाह्य उपकरण है जो मानव के घ्राण बोध (गंध संवेद) के समान सिद्धांत पर कार्य करने वाले सेंसर्स के एरै के इस्तेमाल से गंध सान्द्रण तथा गंध सघनता को मापता है। यह सेंसर एरै सगंध की किस्म पर आधारित पद्धित का सृजन करता है।

एलपीजी में सल्फर कम करने हेतु उत्प्रेरक

सीएसआईआर-आईआईपी ने <mark>एलपीजी में सल्फर</mark> कम करने हेतु प्रयोग किए जाने वाले आधुनि<mark>कतम उत्प्रेरक के लि</mark>ए प्रौद्योगिकी का विकास किया और इसे मैसर्स लोना इंडस्ट्रीज़ <mark>को हस्तांतरित किया। कम्पनी को सोहर रिफाइनरी, ओमान से ऑर्डर प्राप्त हुआ है।</mark>

सिरामिक मेम्ब्रेन-आधारित जल उपचार संयंत्र

सीएसआईआर-सीजीसीआरआई ने भूजल से आर्सेनिक (साधन विरचन हेतु प्रक्रिया सहित) और आयरन के निष्कासन हेतु मेसर्स पोरेल दास वाटर एंड एफ्लूअन्ट कंट्रोल प्राइवेट लिमिटेड के साथ समझौता ज्ञापन पर हस्ताक्षर किए हैं। यह कंपनी सिरामिक मेम्ब्रेन-आधारित जल उपचार संयंत्र की गैर-विशिष्ट आधार पर (20, 000 एलपीडी की क्षमता) प्रक्रम की तकनीकी जानकारी का उपयोग करेगी।

कॉन्फोकल माइक्रोस्कोप

सहस्राब्दी भारतीय प्रौद्योगिकी नेतृत्व पहल कार्यक्रम (सीएसआईआर-एनएमआईटीएलआई) के अन्तर्गत सीएसआईआर ने मैसर्स विन्विश टेक्नोलॉजीज़ प्राइवेट लिमिटेड, तिरूवनन्तपुरम और सीएसआईआर की एक घटक प्रयोगशाला-सीएसआईआर-सीजीसीआरआई की भागीदारी से कॉम्प्लेक्स ब्रॉड बैंड कॉन्फोकल माइक्रोस्कोप को स्वदेशी रूप से डिज़ाइन और विकसित किया। इस कॉन्फोकल माइक्रोस्कोप में सीएसआईआर-सीजीसीआरआई द्वारा विकसित पेटेंटित फोटोनिक क्रिस्टल फाइबर (पीसीएफ) प्रौद्योगिकी पर आधारित सुपरकांटिनम लाइट जेनरेटिंग सोर्स का प्रयोग होता है। विकसित सुपर कॉन्टिनम लाइट सोर्स पर आधारित इस कॉन्फोकल माइक्रोस्कोप को माननीय विज्ञान एवं प्रौद्योगिकी मंत्री ने 7 अक्तूबर, 2014 को लॉंच किया।

आर्सेनिक संदूषित क्षेत्रों हेतु चावल की कृषिजोपजाति (मुक्ताश्री)

सीएसआईआर-एनबीआरआई ने चावल अनुसंधान केंद्र (आरआरएम), चिंसुरा, पश्चिम बंगाल के सहयोग से पश्चिम बंगाल के आर्सेनिक संदूषित क्षेत्रों में क्षेत्रों की खेती के लिए चावल की कृषिजोपजाति सीएन 1794-2- सीएसआईआर-एनबीआरआई, नाम मुक्ताश्री का अभिनिर्धारण एवं विकास किया

2014-15

है। इस प्रजाति के चावल में आर्सेनिक का संचयन कम होता है। यह प्रजाति छ: चावल प्रजातियों अर्थात आईईटी 19226, नयनमोनी, सीएन 1643-3, सीएन 1646-2 में से एक है जो 100 लोकप्रिय चावल प्रजातियों जिनका परीक्षण क्षेत्र निष्पादकता ट्रायल के माध्यम से पश्चिम बंगाल के छ: स्थलों अर्थात मिट्टी में आर्सेनिक संदूषण के विभिन्न स्तर वाले गेघटा, दुर्गापुर, बेलडंगा, चिंसुरा, पुर्बोस्थली तथा बीरनगर में किया गया, से चावल में कम आर्सेनिक संचयन करने वाली प्रजाति के रूप में अभिनिर्धारित की गई थी। इन अभिनिर्धारित प्रजातियों में भी उच्च उत्पादन (5.0-6.0 टन/हेक्टे.) बढ़ाया गया और विशेषतया बोरो (ग्रीष्म) मौसम के लिए आशान्वित हैं।

समूह-वार महत्वपूर्ण उपलब्धियां

जीव विज्ञान समूह

घुटने तथा जोड़ो के दर्द का उत्पाद नैदानिक अध्ययन तथा लाइसेंस के लिए तैयार

सीएसआईआर-सीआईएमएपी ने घुटनों का दर्द, जोड़ो का दर्द तथा शोथ के प्रभावी प्रबंधनार्थ रूमार्थ कैप्सूल का विकास किया है। ये कैप्सूल उत्तेजक रोधी और रूमेटाइड शोथ (आम वात रोम) संबंधी विकारों की दर्दनाशक स्थिति के लिए मानकीकृत तथा वैज्ञानिक रूप से विधिमान्य किए गए। किसी उपयुक्त भागीदार के साथ नैदानिक अध्ययन किए जाने प्रस्तावित हैं।

माइसोप्रोस्टॉल-चिकित्सा गर्भपात हेतु उपयोगी दवा हेतु प्रक्रम

सीएसआईआर-आईआईसीटी ने चिकित्सा गर्भपात हेतु प्रेरित प्रसव के लिए उपयोगी माइसोप्रोस्टल प्रक्रम का विकास किया है। माइसोप्रोस्टल एक महत्वपूर्ण प्रोस्टेग्लेंडिन आधारित दवा है जिसे विश्व स्वास्थ्य संगठन ने घोषित किया है। इस दवा का उपयोग दर्द निवारक दवाओं के साथ अल्सररोधी एजेंट के रूप में भी किया जाता है। यह प्रौद्योगिकी मैसर्स अवरा लैबोरेटरीज को हस्तांतरित की गई है जिसने इस प्रौद्योगिकी का सफलतापूर्वक वाणिज्यीकरण किया है। सीएसआईआर-आईआईसीटी की प्रौद्योगिकी ने सफलतापूर्वक इस दवा के उत्पादन की लागत को कम किया है जिससे कि यह दवा देश के आम लोगों के लिए वहनीय हो गई है।

बह् उपयोगितापरक ऐंजाइम के उत्पादनार्थ प्रौद्योगिकी

बहु उपयोगितापरक एंजाइम के उत्पादनार्थ सीएसआईआर-आईएचबीटी द्वारा विकसित यह प्रौद्योगिकी मैसर्स फाइटो बायोटेक, कोलकाता को हस्तांतिरत कर दी गई है। पश्चिमी हिमालय क्षेत्र में 10, 000 फुट से अधिक ऊँचाई पर किए गए सर्वेक्षण के दौरान बर्फ में उगने वाले इस पोटेंटिलाएस्ट्रोसेंन्विना पौधे से खोजा गया यह सुपर ऑक्साइड डिस्म्युटेज (एसओडी) एंजाइम एंटी-एजिंग क्रीम, फलों तथा सिक्यों की निधानी आयु में वृद्धि करने और क्रायो-सर्जरी तथा अंगों के संरक्षण में उपयोगी पाया गया। अधिक ऑक्सीकारक गुणों तथा बहु-उपयोगों के कारण एसओडी की अत्यधिक मांग है और इसिलए वैश्विक बाजार में इसकी अत्यधिक कीमत है। ई.कोली में जीन का क्लोन बनाने के लिए एक प्रोटोकॉल तैयार किया है और इसके अतिरिक्त सिंगल अमीनों एसिड द्वारा इसकी योजना बनायी गयी तािक इसकी एकरूपता और तापस्थिरता बढ़ायी जा सके। एसओडी शून्य से लेकर 400 सेंग्रे से अधिक तापमान की व्यापक रंज में अधिक स्थिर और प्रकार्यात्मक है।

सीएसआईआर-आईआईआईएम द्वारा पृथक्कृत नया मॉलिक्यूल; आर्थ्राइटिस के लिए संभावना

सीएसआईआर-आईआईआईएम ने हिमालयी पादप में पाए गए आर्थ्राइटिक रोधी गुण वाले नए मालिक्यूल को पृथक किया है। स्थानीय तौर पर पाटलभेड़ा (बर्जेनिआ सिलिएटा) के रूप में ज्ञात वाले इस पादप में पाया गया कि यह मालिक्यूल रुमेटाइड संधिशोध की दवा के लिए आशाजनक है। रुमेटाइड संधिशोध सामान्यतया बुजुर्गों में जोड़ों की प्रात: दुर्नम्यता तथा शोध से अभिलक्षणित किया गया है। सीएसआईआर-आईआईआईएम के वैज्ञानिकों द्वारा तैयार की गई यह दवा शोध रोकने और दर्द कम करने में सफल पायी गई है। रुमेटाइड शोध की हाल ही की दवा में अस्टियोपोरोसिस, वज़न बढ़ना, ट्यूबरकुलोसिस तथा संक्रमण की सुग्राहिता में वृद्धि जैसे पार्श्व प्रभाव हैं। तथापि, इस नए मॉलिक्यूल को जंतु अध्ययन में सुरक्षित पाया गया है।

2014-15

माइक्रोपीसीआर- हाथ में पकड़े जाने वाली एक नैदानिक डिवाइस

विभिन्न रोगों का निदान करने हेतु बैटरी चालित हाथ में पकड़ा जा सकने वाला माइक्रोपीसीआर लांच किया गया। जिन रोगों का निदान किया जा सकता है वे हैं: तपेदिक, मलेरिया, डेंगू, चिकनगुनिया, हिपेटिटिस बी तथा एच1एन। यह विश्व स्तर का उत्पाद है जिसका 100 से अधिक देशों में पेटेन्ट किया जा चुका है। औद्योगिक भागीदार बिग्टेक लैब्स ने मॉलिबयो डाइग्नोस्टिक्स नामक एक संयुक्त नवोद्यम तैयार किया है तािक भारत तथा विदेश में इन डिवाइसों का विपणन हो सके। कंपनी का विचार है कि टीबी परीक्षण और आरएनटीसीपी हेतु, टीबी तथा औषध प्रतिरोधी टीबी पहचान हेतु इसे और विधिमान्य बनाना है तािक राष्ट्रीय टीबी पहचान तथा नियंत्रण कार्यक्रमों को सशक्त किया जा सके।

'कैटेचिन' निष्कर्षण से कैंसररोधी चाय कैप्सूल

कैटेचिन अनेक स्वास्थ्य लाभों हेतु ज्ञात एक तरह का प्राकृतिक फ्लैवोनाइड तथा प्रतिऑक्सीकारक है। सीएसआईआर-आईएचबीटी ने नई चाय पित्तयों से 'कैटेचिन' के निष्कर्षण हेतु पर्यावरण अनुकूल, विलायक मुक्त हरित प्रक्रम प्रौद्योगिकी विकसित की है। यह प्रौद्योगिकी उद्योगों को वाणिज्यीकरण हेतु हस्तांतरित की जा रही है। हालांकि कैटेचिंस रोगशामक नहीं है फिर भी ये रोग निवारक के रूप में कार्य करेंगे क्योंकि ये ऑक्सीजन मुक्त मूलकों, जो विभिन्न प्रकार के कैंसर कारक भी हैं, के कारण हमारे शरीर को पहुंचने वाली क्षति को नियंत्रित करते हैं।

2014-15

प्राचीन मानव जीनोमों से आधुनिक यूरोपवासियों की तीन पैतृक पीढियों का पता चलना

सीएसआईआर-सीसीएमबी ने जर्मनी के `~7000 वर्ष पुराने किसान और लक्समबर्ग तथा स्वीडन के आठ ~8000 वर्ष पुराने हंटर गैदर्स के जीनोम का अनुक्रमण किया । सीएसआईआर-सीसीएमबी ने इनका विश्लेषण किया और 2345 समकालीन मानवों वाले अन्य प्राचीन जीनोमों से यह दिखाने के लिए कि अधिकतर आधुनिक यूरोपियन की उत्पत्ति कम से कम तीन अत्यधिक विभिन्नता वाली पीढ़ियों से हुई है । पश्चिमी यूरोपियन हंटर- गैदर्स जिन्होंने सभी यूरोपियों को वंशावली को आगे तो बढ़ाया लेकिन लेकिन नियर एस्टरनर्स को नहीं; ऊपरी पुरापाषाणयुगीन साइबेरियाई से संबंधित प्राचीन उत्तरी यूरेशियावासियों जिन्होंने यूरोपियन तथा नियर ईस्टरनर दोनों को योगदान दिया; और पूर्वी यूरोपियन किसानों जो मुख्यतया नियर ईस्टर्न मूल से थे किन्तु पैतृक से संबंधित पूर्व पश्चिमी यूरोपियन हंटर-गैदर्स को आश्रय भी दिया। सीएसआईआऱ-सीसीएमबी ने इन लोगों के गहरे संबंधों का खाका तैयार किया और यह प्रदर्शित किया कि पूर्व के यूरोपियन किसानों की ~44 प्रतिशत वंशावली बसल यूरेशिया वासी के लोगों से थी जिसने अन्य गैर अफ्रीकी वंशों के विविधीकरण से पहले विभाजित कर दिया। यह अनुसंधान कार्य नेचर में प्रकाशित किया गया है। रेडी-टू-ईट (आरटीई) सुविधाजनक

स्वास्थ्य फूड्स

सीएसआईआर-सीएफटीआरआई ने प्रोसी मिलेट का उपयोग करते हुए रेडी-टू-ईट बहिष्कृत स्नैक हेतु एक प्रक्रम का विकास और मानकीकृत किया है। इस बहिष्कृत उत्पाद के 250-300 गेज पीपी या एचएमएचडीपीई पाउच की पैकिंग होने के 12 महीने से अधिक तक इसके करारेपन की निधानी आयु मालूम हुई।

रसायन विज्ञान समूह

वेस्ट-टू-बायोगैस टेक्नोलॉजी

सीएसआईआर-आईआईसीटी ने आर्गेनिक वेस्ट-टू-बायोगैस प्रणाली विकसित की है जिससे विभिन्न चरणों में महत्वपूर्ण लाभ हो रहा है। यह पेटेंटित हिरत प्रौद्योगिकी फीडस्टॉक के रूप में वनस्पित तथा खाद्य अपिशष्ट के उपयोग से 120 से 150 क्यूबिक बायोगैस (लगभग 30 किग्रा एलपीजी के बराबर) उत्पन्न करने में सक्षम है। इस प्रक्रम के दौरान जैविक खाद की अच्छी मात्राएं भी तैयार की गई हैं। वर्तमान में सीएसआईआर-आईआईसीटी दो से पाँच टन धारिता की प्रणालियों के सृजन पर कार्य कर रहा है जो बायोगैस तथा जैविक खादों की अत्यधिक मात्रा उपलब्ध कराने में समर्थ है। ये इकाइयां तिरुमाला तिरूपित देवस्थनम (टीटीडी) और आन्ध्र प्रदेश नवीन ऊर्जा विकास निगम (एनईडीसीएपी) में (राज्य की लगभग 20 म्युनिसिपालिटी में पाँच टन धारिता वाली एजीआर प्रणालियां) अधिष्ठापित की जा रही हैं।

हाइड्रेजीन हाइड्रेट के विनिर्माण की पर्यावरण अनुकूल प्रौद्योगिकी

सीएसआईआर-आईआईसीटी ने हाइड्रेजीन हाइड्रेट के निर्माण हेतु एक प्रौद्योगिकी का विकास किया है जिसका उपयोग एग्रोरसायन, फार्मास्युटिकल्स तथा जल उपचार में होता है। यह प्रौद्योगिकी मेसर्स गुजरात एल्कलीज एंड केमिकल्स लिमि. (जीएसीएल) वड़ोदरा में प्रदर्शित की गई थी। हाइड्रेजीन हाइड्रेट का उपयोग बहुत से औद्योगिक प्रचालनों जैसे रंजकों हेतु निश्चित कार्बनिक वर्णकों में, फोटोग्राफी हेतु अभिकर्मक के रूप में, तापीय तथा नाभिकीय संयंत्रों के जल परिपथ में संक्षारणरोधी योगज, औद्योगिक बॉयलर तथा उच्च दाब वाले वाष्प जनित्र में ऑक्सीजन अपमार्जक, कीमती धातुओं का शोधन, अम्लोपचार तथा पृष्ठ उपचार समाधानों से धातुओं की प्राप्ति, तथा द्रव तथा गैस अपशिष्टों के उपचार में होता है। चूँिक सीएसआईआर-आईआईसीटी द्वारा विकसित यह प्रक्रम हाइड्रोजन पैरोक्साइड पर आधारित है इसलिए यह पर्यावरण के प्रदूषकों के प्रतिकूल प्रभाव को कम करता है। सीएसआईआर-आईआईसीटी ने हाइड्रेजीन हाइड्रेट प्रौद्योगिकी के लिए जीएसीएल के साथ समझौता किया है। जीएसीएल 80 प्रतिशत हाइड्रेजीन हाइड्रेट के उत्पादनार्थ शुरूआत में 8,000 टीपीए का वाणिज्यिक संयंत्र जल्द ही स्थापित करेगा।

पेट्रोरसायन के निर्माणार्थ सुक्ष्म उत्प्रेरक

सीएसआईआर-आईआईपी ने ऊर्जा दक्ष संश्लेषण संबंधी नई रणनीतियों को विभिन्न सूक्ष्म संरचित पदार्थ (सूक्ष्म-उत्प्रेरक) तैयार करने के लिए विकसित किया है जो अनेक चुनौतीपूर्ण उत्प्रेरक अभिक्रियाओं के लिए उपयोगी है। विकसित सूक्ष्म उत्प्रेरक जो प्रोपीलीन के चुनिंदा आक्सीकरण के नए प्रक्रम

2014-15

को प्रोपीलीन आक्साइड हेतु अपनाने के लिए सहायक हैं, किफायती रूप से व्यवहार्य और पर्यावरणानुकूल अर्थात न्यूनतम अपशिष्ट करने वाला है। प्रोपीलीन ऑक्साइड पण्य रसायन जैसे पाल्युरिथेन फोम्स, प्रोपीलीन ग्लाइकोल, पोलीप्रोपीलीन ग्लाइकोल, प्रोपीलीन कार्बोनेट इत्यादि को तैयार करने में प्रयुक्त एक आवश्यक संक्षिष्ट मध्यस्थ है और वर्तमान में इसका उत्पादन प्रतिवर्ष 10 मिलियन टन से अधिक है।

ईंधन हेतु प्लास्टिक

भारत में प्लास्टिक उपभोग लगभग ~10MMT (2010) होना बताया गया है जबिक प्लास्टिक अपशिष्ट ~15, 000 TDP है जिससे पर्यावरण अत्यधिक प्रदूषित होता है। देश में प्लास्टिक उपयोग तथा सहचारी अपशिष्ट उत्पादन की बढ़ती आशंकाओं को देखते हुए, सीएसआईआर-भारतीय पेट्रोलियम संस्थान (सीएसआईआर-आईआईआर) ने अपशिष्ट प्लास्टिक (पॉलीओलेफिनिक) को मूल्यवर्धित हाइड्रोकार्बनों जैसे-गैसोलीन, डीजल तथा ऐरोमैटिक्स में परिवर्तन करने के लिए एक सरल प्रक्रम विकसित किया है। इस प्रौद्योगिकी की प्रमुख विशेषता है कि इस प्रक्रम में पॉलीओलेफिनिक अपशिष्टों (एचडीपीई, एलडीपीई, पीपी इत्यादि) से एलपीजी के साथ-साथ गैसोलीन अथवा डीजल अथवा ऐरोमैटिक्स का भी अनन्य उत्पादन शामिल है तथा यह द्रव ईंधन यूरो III (Euro III) के विनिर्देशों के अनुरूप है। इसके अतिरिक्त, यह प्रक्रम सरल तथा पर्यावरण अनुकूल है। इस 30 टीपीडी संयंत्र की अनुमानित लाभ अवधि लगभग ~3 वर्ष की है।

ऊष्मारोधी जूते का सोल

सीएसआईआर-सीएलआरआई ने जूते का ऐसा सोल तैयार किया है जो 250° सेंटीग्रेड तक के तापमान को सहन कर सकता है। इस प्रौद्योगिकी से सेफ्टी शूज का स्वदेशी उत्पादन किया जा सकेगा। फिलहाल इनका आयात किया जा रहा है। आग बुझाने वाले सेफ्टी वर्करों की सुरक्षा के लिए विकसित यह फाइबर रिइंफोर्सड प्लास्टिक (एफआरपी) सोल ग्लास का बना होता है और इस पर फास्फोरस आधारित आसंजक कार्बन फाइबर की कोटिंग होती है। उच्च घुलन केंद्र ग्लास और कार्बन फाइबर अत्यधिक तापमान सहने देता है। फिर भी जूते के सोल के रूप में लचीलापन और एफआरपी उपयोगिता एक चुनौती थी। जूते के सोल के रूप में कार्य करने हेतु इस मटीरियल को लचीला और उपयुक्त बनाने के लिए कुछ और रसायन जोड़े गए हैं। सीएसआईआर-सीएलआरआई में विकसित ऊष्मारोधी जूते का यह सोल आग दुर्घटना के दौरान अत्यधिक गर्म जगह से बचाव हेतु व्यक्ति को पर्याप्त समय देता है। सेफ्टी शूज में उपयोग के अतिरिक्त इस हल्के तथा लचीले सोल का उपयोग नियमित जूतों में भी किया जा सकता है।

अपशिष्ट से उच्च ग्रेड वाली जिलेटिन बनाने हेतु प्रौद्योगिकी

चर्मसंस्कार अपशिष्ट को यदि ऐसे ही छोड़ दिया जाय तो पर्यावरण पर इसके विनाशकारी प्रभाव हो सकते हैं। सीएसआईआर-सीएलआरआई ने चर्मसंस्कार अपशिष्ट से उच्च ग्रेड वाली जिलेटिन बनाने हेतु प्रौद्योगिकी का विकास किया है। जिलेटिन का फार्मास्युटिकल और खाद्य उद्योग में व्यापक उपयोग है। यह सामान्यतया जावनरों की हड्डियों तथा सूअर के चमड़े से बनाया जाता है। इस नवीन प्रौद्योगिकी से सीएसआईआर-सीएलआरआई के वैज्ञानिकों ने त्वचा तथा इसमें छिपे अवशेषों की कोलेजन प्रोटीन से जिलेटिन का सफलतापूर्ण उत्पादन किया है। औद्योगिक जिलेटिन का उत्पादन करने के लिए चर्म शोधनशालाओं के ठोस अपशिष्ट को प्रक्रमित करना होता है और घंटों पकाना होता है। फिर भी इस प्रक्रम से कम मान के जिलेटिन का उत्पादन होता है। कोलेजन प्रोटीन का नियंत्रित रूप में प्रक्रमण किया गया तािक कैप्सूल बनाने के लिए अपेक्षित हाइ जेल स्ट्रेन्थ का जिलेटिन उत्पादित किया जा सके। चर्म विनिर्माण हेतु प्रक्रमित एक टन जानवरों की तव्चा से 50 किग्रा समकर्तन अपशिष्ट होंगे जिनसे 10 किग्रा जिलेटिन बनाया जा सकता है। संस्थान उच्च ग्रेड वाले जिलेटिन के विनिर्माण हेतु इस प्रौद्योगिकी का पेटेंट करने की प्रक्रिया कर रहा है।

इंजीनियरी विज्ञान समूह

ऐलूमिनियम मेटल मेट्रिक्स कम्पोजिट टॉर्पीडो नोज कोन

टॉर्पीडोज हेतु नोज कोन के निर्माण सहित विभिन्न अनुप्रयोगों हेतु ऐलूमिनियम आधारित घटक फोर्जिंग प्रौद्योगिकी द्वारा तैयार किए गए हैं, जो कि अधिक समय और श्रम साध्य प्रक्रिया है। सीएसआईआर-एएमपीआरआई ने XII पंचवर्षीय योजना परियोजना "स्वचालित और सामान्य अभियांत्रिकी अनुप्रयोगों हेतु नवीन ऊर्जा प्रभावी धात्विक पदार्थ" के तहत लिक्विड मेटालर्जी रूट द्वारा $AI-Si(BS\ LM\ 25)$ एलॉय मैट्रिक्स में परिक्षेपित 10% परिशुद्ध ($\sim10\mu m$) Sic कणों के इस्तेमाल से नौ सेना सम्बन्धी अनुप्रयोगों हेतु ऐलूमिनियम मेटल-मेटल मैट्रिक्स आधारित नोज कोन घटक

2014-15

विकसित किया है। इस घट<mark>क ने मजबूती खो</mark>ए बिना बेहतर मिकेनिकल डिम्पंग लक्षण <mark>दर्शाए हैं। यह प्रौद्योगिकी मेसर्स एक्सक्लूसिव मैग्नीशियम, हैदराबाद को हस्तांतरित की गई है और निर्मित घटक डीआरडीओ की प्रयोगशाला नेवल साइंस एंड टेक्नोलॉजी लैबोरेटरी (एनएसटीएल) विशाखापट्नम में प्रयोक्ता परीक्षणाधीन है।</mark>

ठंडी जलवायु वाले क्षेत्र के लिए सोलर विंडो सिस्टम

सीएसआईआर-सीबीआरआई द्वारा ठंडी जलवायु वाले क्षेत्र के लिए सोलर विंडो सिस्टम का विकास किया गया है। यह विंडो ग्लास के बिल्कुल पीछे लगाया जाता है। इस सिस्टम का कमरे के अंदर के प्रकाश के दृष्टिकोण से अध्ययन किया गया है। कमरे के तल क्षेत्र का 10% खुला क्षेत्र रखकर प्रकाश की पूर्ति की गई है। यह भीतरी वायु के तापमान को बढ़ाता है। कमरे के भीतर वायु तापमान में अधिकतम अंतर 7.50 से. आया।

ऊर्जा मानीटरिंग हेतु स्मार्ट मीटर (MeTER)

सीएसआईआर-सीएमईआरआई द्वारा डिजाइन एवं विकसित इस स्मार्ट मीटर MeTER में उपभोक्ता आधारिका पर संस्थापित एक 220v/30A AC ऊर्जा मीटर तथा वाई-फाई हॉटरपॉट के माध्यम से उपलब्ध कराया गया इंटरनेट कनेक्शन है । यह स्थानिक सॉफ्टवेयर $\frac{http://wattcontrol.in}{http://wattcontrol.in}$ से असानी से निशुल्क डाउनलोड किया जा सकता है। इस स्मार्ट मीटर $\frac{mt}{http://wattcontrol.in}$ में एक अन्तर्निहित क्रमादेश भार सीमक है जो एक बार प्रोग्राम डाउन लोड करने तथा उपयुक्त आईडी प्रविष्टि करने पर स्मार्ट फोन के माध्यम से उपभोग नियंत्रण करने के लिए है। यह मीटर पे एंड यूज मोड पर संचालित होता है तथा उपभोग संबंधी वास्तविक काल ग्राफिकल डाटा स्मार्ट फोन के माध्यम से उपलब्ध है।

स्वचालित सड़क आपात मूल्यांकन हेतु सुवाह्य किफायती सिस्टम फ्रेमवर्क

सीएसआईआर-सीआरआरआई ने एक सुवाह्य किफायती सिस्टम फ्रेमवर्क का प्रस्ताव दिया है जिसका उपयोग सर्वव्याप्त यात्री वाहनों, लो एंड लैपटॉप, वेबकाम तथा डिजिटल कैमरा में स्वचालित सड़क आपदा मूल्यांकन हेतु किया जाता है। वेबकॉम तथा डिजिटल कैमरा से सुसज्ज्ति इस प्रस्तावित फ्रेमवर्क का उपयोग करते हुए भारतीय राजमार्ग की रॉ वीडियो क्लिपों को सामान्य दिन प्रकाश प्रास्थितियों में बिना किसी कृत्रिम प्रकाश प्रणाली के बनाया जाता है। फिर रोड सर्फेस वीडियो क्लिपों से रोबस्ट एल्गारिथम का उपयोग करते हुए संग्रहित वीडियो क्विलपों को सड़क के गड्ढों की स्वतः पहचान और मापन हेतु तैयार किया जाता है। ये परिणाम इंगित करते हैं कि इस प्रस्तावित फ्रेमवर्क में स्वचालित और दक्षतापूर्वक सड़क के गड्ढों की पहचान और मूल्यांकन करने की विशिष्ट क्षमता है। इस प्रस्तावित फ्रेमवर्क के उपयोग से निकाली गई सूचना को भारतीय सड़कों का अनुरक्षण निर्धारित करने और मरम्मत तथा अनुरक्षण संबंधी मुद्दों हेतु अल्प समय में और भी उपयुक्त कार्रवाई करने हेतु किया जा सकता है।

ध्वनिक-N-तरंग पहचान के उपयोग से संसूचन तथा प्रहार दृश्यावलोकन

अन्य उल्लेखनीय उपलब्धि में सीएसआईआर-एनएएल द्वारा विकसित लक्ष्य पर बुलेट के प्रहार का पता लगाने के लिए ध्वनिक N-तरंग पहचान के उपयोग से संसूचन तथा प्रहार दृश्यावलोकन (डीएचएवीएएनआई) हेतु इस स्वदेशी प्रणाली का भारतीय थल सेना ने बेंगलूरु, सिकंदराबाद तथा इन्फैन्ट्री स्कूल मॅह में आर्मी रेंज का कठिन क्षेत्र परीक्षण शुरु किया है। एसडीडी सिकंदराबाद के कमांडेंट को ध्विन (डीएचवीएएनआई) को औपचारिक तौर पर जुलाई 03, 2014 को सौंपा गया। यह स्वचालित तथा नतोन्नत प्रणाली न केवल आवश्यकताओं को पूरा करती हैं बिल्क अंतरराष्ट्रीय स्तर पर उपलब्ध तुलनीय प्रणालियों के विनिर्देशों से बेहतर है। वर्तमान में इस प्रणाली की कीमत ऐसी ही अंतरराष्ट्रीय प्रणाली की कीमत का लगभग 50 से 60% है। ध्यातव्य है कि पूरे देश में आर्मी के पास 2000 से अधिक फाइटिंग लेन्स हैं जिनसे राष्ट्रीय खजाने में विदेशी मुद्रा की महत्वपूर्ण बचत होने की प्रत्याशा है।

NiTi शेप मैमोरी एलॉयज हेत् उत्पादन प्रौद्योगिकी

सीएसआईआर-एनएएल ने अनेक वर्षों से विशेष पदार्थ के क्षेत्र में महत्वपूर्ण योगदान दिए हैं । हिन्दुस्तान एयरोनोटिक्स लिमिटेड (एचएएल), बेंगलूरु और मिश्रधातु निगम (मिधानी), हैदराबाद के सहहयोग से 20-40 किग्रा गलन क्षमता में NiTi शेप मैमोरी एलॉयज के उत्पादन हेतु प्रौद्योगिकी का विकास सफलतापूर्वक पूरा किया गया है। विभिन्न उत्पादों यथा रॉड्स, स्ट्रिप्स और वायर्स का वांतरिक्ष और अन्य इंजीनियरिंग दोनों क्षेत्रों में अनुप्रयोगों

2014-15

हेतु निर्माण किया गया है। वर्ष के महत्वपूर्ण कार्यक्रम में सीएसआईआर-एनएएल और मिश्रधातु निगम लि. (मिधानी) ने मानक मॉड्यूल्स कार्बन फाइबर्स के विरचन हेतु 'एयरो नौटिकल ग्रेड कार्बन फाइबर्स के विकास और सतत प्रक्रम के विकास के लिए 16 अक्तूबर, 2014 में समझौता ज्ञापन पर हस्ताक्षर किए हैं। यह समझौता ज्ञापन मिधानी के साथ शृंखला में दूसरा है। इस समझौता ज्ञापन के तहत प्रथम चरण में मिधानी मानक मॉड्यूल्स कार्बन फाइबर्स के विरचन हेतु सतत प्रक्रम विकसित करने में सीएसआईआर-एनएएल को सहायता प्रदान करेगा। दूसरे चरण में इस समझौता ज्ञापन के तहत की गई जांचों के परिणामों का उपयोग कार्बन फाइबर की ज्यादा मात्रा का उत्पादन करने के लिए इस प्रौद्योगिकी के उन्नयन के लिए किया जाएगा। सीएसआईआर-एनएएल के प्रायोगिक संयंत्र की क्षमता को मौजूदा संयंत्र और मशीन का लगभग 80% उपयोग जारी रखते हुए कुछ उपकरण और प्रणालियों के संवर्धन/आशोधन द्वारा कार्बन फाइबर को 25 से 50 टन प्रतिवर्ष बढ़ाया जाएगा।

विषाक्त उत्सर्जन मॉनीटरिंग एवं नियंत्रण हेतु मोबाइल पाइलट प्लांट

सीएसआईआर-एनईईआरआई, नागपुर ने लघु एवं मध्यम उद्योगों (एसएमई) सिहत विभिन्न उद्योगों में फ्लू गैस के उत्सर्जन एवं नियंत्रण संबंधी अध्ययन करने के लिए विषाक्त उत्सर्जन मानीटिएंग एवं नियंत्रण हेतु एक मोबाइल पालट प्लांट विकिसत किया है। विभिन्न लघु उद्योगों जैसे सिरामिक किल्स, हॉट मिक्स प्लांट अन्य लघु उद्योगों इत्यादि की प्रस्तुति करने वाली विभिन्न आकार की धूल युक्त फ्लू गैस तथा विभिन्न सकेंद्रणों की गैंसे उनके उत्सर्जन अभिलक्षण हेतु मानीटर की जाएगी। इस गैस का एक भाग विभिन्न नियंत्रण प्रणालियों में भरा जाएगा और उनकी संग्रहण दक्षताओं को समय, तापमान, प्रवाह इत्यादि में मापा जाएगा। तकनीकी-आर्थिक सुगन्यता के संबंध में निष्पादकता की जांच की जाएगी और उत्सर्जनों के नियंत्रणार्थ पाइलट स्केल में एक प्रणाली उपलब्ध कराई जाएगी जो पूर्ण स्केल अधिष्ठापन हेतु विधित की जा सकती है।

नागपुर आयुध निर्माणी में नवीन सीवर उपचार प्रणाली

शहरी क्षेत्रों, विशेष रूप से नागपुर में पानी की कमी को पूरा करने के लिए सीएसआईआर-एनईईआरआई ने परंपरागत एंड-ऑव-पाइप जल प्रबन्धन से समाकलित अभिगम तक आमूल-चूल परिवर्तन प्रारंभ किया है। विकसित प्रौद्योगिकी में उच्च दर के अपफ्लो एवैरोबिक फिल्टर लगा है जो सीवर से कार्बनिक प्रदूषकों को निकालने में सहायता देता है। उपसतही क्षेतिज प्रवाह से निर्मित आई भूमि नाइट्रोजन और फॉस्फोरस सहित शेष प्रदूषकों को निकाल देती हैं। यह उपचारित बहिस्राव प्रैशर सेंड फिल्टर से गुजरती है और कार्बन कॉलम्स को सक्रिय करती है जो रीकेल्सीट्रेंट कार्बनिक्स नामक अजैवनिम्नीकरणीय कार्बनिक पदार्थ को समाप्त करती है। अंतत: उपचारित बहिस्राव क्लोरीनन अथवा पराबेंगनी (यूवी) किरणों के इस्तेमाल से विसंक्रमित किया जाता है और सभी अपेय प्रयोजनों के लिए इस्तेमाल किया जाता है। 'स्लज ड्राईंग रीड बेड्स (एसडीआरबी)' नामक निर्मित आई भूमि के द्वारा स्लज प्रबन्धन का देश में पहली बार प्रदर्शन किया जा रहा है। यह उपचार प्रणाली 1000 से अधिक जनसमुदाय द्वारा सृजित सीवर का उपचार एवम् प्रबन्ध करेगी (प्रतिदिन 1 लाख लिटर सीवर का उपचार)। इस उपचारित बहिस्राव का उपयोग बहुउद्देशीय लॉन का रखरखाव करने और आम के बागों की सिंचाई करने के लिए किया जाएगा।

स्चना विज्ञान समूह

भारत ने कोलगेट-पामो<mark>लिव को माउथवॉश फार्मूले</mark> का पेटेंट कराने से रोका

भारत ने प्राचीन ग्रन्थों का हवाला देते हुए औषधि तत्वों को समाविष्ट करने वाले माउथवाश फार्मूले को पेटेंट कराने के लिए उपभोक्ता वस्तुओं की विशाल कंपनी कोलगेट-पामोलिव के प्रयत्नों को विफल कर दिया है। प्राचीन ग्रन्थ दर्शाते हैं कि इसे (माउथवाश फार्मूले को) प्राचीन चिकित्सा पद्धितयों में पारंपरिक रूप से प्रयोग किया जाता था। सीएसआईआर ने अपने पारंपरिक ज्ञान डिजिटल पुस्तकालय (टीकेडीएल) कार्यक्रम के माध्यम से प्राचीन ग्रन्थों से प्राप्त संदर्भों के रूप में प्रमाण प्रस्तुत किए जिससे कारण कि पेटेंट आवेदन को वापस लेना पड़ा।

पेटइंफार्मेटिक्स- कौशल विकास कार्यक्रम

कौशल विकास कार्यक्रम के भाग के रूप में सीएसआईआर ने पेटइंफार्मेटिक्स (पेटेंट सूचना विज्ञान) में एक वर्षीय स्नातकोत्तर डिप्लोमा शुरू किया है। यह कोर्स पेटेंट सर्चिंग के क्षेत्र में प्रशिक्षण देने, पेटेंट परिदृश्य सृजन करने के उद्देश्यार्थ पठन तथा विश्लेषण, अनुसंधान अंतराल को अभिनिर्धारित करने, प्रतियोगी बुद्धिमत्ता, नए जोखिमपूर्ण कार्यों का मूल्यांकन, पेटेंट पोर्टफोलियो प्रबंधन और तकनीकी-विधिक अध्ययन (पेटेंटेबिलिटी, वैधता,

2014-15

उल्लंघन तथा प्रचालन करने हे<mark>तु स्वतंत्रता) के</mark> लिए डिजाइन किया गया है। यह एक विशिष्ट कार्यक्रम है जिसके अंतर्गत 50 प्रतिशत समय प्रगतिशील परियोजनाओं पर कार्य प्रशिक्षण के लिए लगाया जाएगा। इसके अंतर्गत प्रशिक्षित युवा पेशेवरों को कारपोरेट प्लानिंग, व्यवसाय विकास, आईपी तथा अनुसंधान एवं विकास प्रबंधन कार्यों और कानूनी फर्मों, परामर्शी कंपनियों तथा अन्य ज्ञान प्रक्रमण संगठनों में वृद्धि परक कार्य अवसर मिलेंगे।

सीएसआईआर आउटरीच

सीएसआईआर-निस्केयर द्वारा प्रकाशित दो समाचार पत्र— सीएसआईआर न्यूज (अंग्रेजी में) और सीएसआईआर समाचार (हिंदी में) - अन्य अनुसंधान एवं विकास संगठनों, विश्वविद्यालय के विभागों, उद्योगों व अन्य प्रयोगकर्ताओं हेतु सीएसआईआर की विज्ञान एवं प्रौद्योगिकी संबंधी उपलब्धियों के संबंध में विविध सीएसआईआर घटकों और जानकारी जुटाने वालों के बीच प्रभावशाली संपर्कों के रूप में मदद करते हैं।

वैज्ञानिक जागरुकता का प्रसार

सीएसआईआर-निस्केयर की अंग्रेजी, हिंदी तथा उर्दू में प्रकाशित तीन लोकप्रिय विज्ञान पत्रिकाएं और देश के नागरिकों के बीच वैज्ञानिक जानकारी का प्रसार करने हेतु जारी हैं। ये पत्रिकाएं सिविल सोसाइटी को विज्ञान एवं प्रौद्योगिकी से जोड़ने में महत्वपूर्ण भूमिका निभा रही हैं। ये पत्रिकाएं 'विज्ञान प्रगति (हिंदी)', 'साइंस रिपोर्टर (अंग्रेजी)' और 'साइंस की दुनिया (उर्दू)' उन युवाओं में बहुत लोकप्रिय हैं जो विज्ञान की डिग्री हेतु प्रयासरत हैं।

भौतिक विज्ञान समूह

कॉकोनट चिप्स में नमी की ऑन-लाइन माप हेतू नमी संवेदक

सीएसआईआर-सीईईआरआई ने मेसर्स मैरिको, पुदूचेरी में कोप्रा के नमी अवयव के ऑन-लाइन मूल्यांकन का विकास किया है। अधिक नमी वाला अवयव कोप्रा को कवक और घातक आक्रमण के लिए सुभेद्य बनाता है। एनआईआरएस फिल्टर टाइप मॉइस्चर सेंसर सिस्टम को समनुरुप बनाया गया और वायरलैस ट्रांस्मीटर/रिसीवर्स और उपयुक्त रिपीटर्स से संवर्धित किया गया तािक दूरस्थ पीसी के मापे गए आंकड़ा की सूचना नियंत्रण कक्ष में दी जा सके। यह सिस्टम मेसर्स मैरिको लि. में अधिष्ठापित और चालू किया गया और इसका कार्यकरण संतुष्टिपूर्ण पाया गया है। फीड बैक के आधार पर यह सिस्टम उपयुक्त रूप से आशोधित किया जाएगा और ऑन-लाइन माप एवम् नियंत्रण हेतु उन्नत बनाया जाएगा।

ताप ध्वनिक ऊर्जा जनित्र

सीएसआईआर-सीईईआरआई ने प्रायोगिक अध्ययनों के उद्देश्यार्थ ताप ध्विनक ऊर्जा जिनित्र के प्रयोगशाला संबंधी आदिप्ररूप का विकास किया है। यह आदिप्ररूप ध्विनक ऊर्जा के माध्यम से तापीय ऊर्जा को विद्युत ऊर्जा में परिवर्तित करता है। यह तापीय-ध्विनक ऊर्जा संपरिवर्तन सौर ऊर्जा को विशेषतया विकंद्रीकृत सेटिंग के उपयोग में लाने के लिए एक वैकल्पिक प्रौद्योगिकी उपलब्ध कराता है। ताप ध्विनक ऊर्जा जिनत्र विभिन्न नवीकरणीय ऊर्जा स्रोतों जैसे सूर्य का प्रकाश, बायोगैस इत्यादि से व्युत्पन्न ऊष्म ऊर्जा द्वारा संचालित कियाजा सकता है। यह जिनत्र सूक्ष्म चैनलों युक्त स्टैक संरचना वाली संवृत्त वाहिनी का होता है। जब स्टैक का एक सिरा गर्म हो जाताहै तब दूसरेसिरेपर एक तीव्र आवाज उत्पन्न होती है जिसेलाइनर अल्टरनेटर का उपयोग कर विद्युत में परिवर्तित किया जाता है। सीएसआईआर-सीईईआरआई में निर्मित ताप ध्विनक ऊर्जा जिनत्र आदिप्ररूप को वर्तमान में विद्युत हीटर द्वारा ऊर्जा दी जाती है और यह 150-160dB (1.5 KPa) की उच्च तीव्रतावाली ध्विन तरंगों को उत्पादित करने में सक्षमहै। यह ध्विनक ऊर्जा स्पीकर आपरेटिंग का उपयोग कर माइक्रोफोन मोड में विद्युत ऊर्जा में परिवर्तित की जाती है। ताप-ध्विनकिडजाइन का उपयोग करके ऊर्जा उत्पादन का यह प्रथम प्रदर्श है। वर्तमान में इस प्रणाली का इष्टतमीकरण किया जा रहा है तािक विभिन्न वैकल्पिक नवीकरणीय ऊर्जा स्रोतों से उत्पादित ऊष्मा से परिचालित हो सके।

सिद्धार्थ-III:6V मेडिकल लाइनैक

भारत सरकार के जय विज्ञान कार्यक्रम के अंतर्गत सीएसआईआर-सीएसआईओ चंडीगढ़ तथा समर मुम्बई ने कैंसर थैरेपी हेतु 6MV सृजित मेडिकल लाइनैक सिस्टम का विकास संयुक्त रूप से किया। दो मशीनें अर्थात सिद्धार्थ I और सिद्धार्थ I का विकास पहले ही हो गया है और इसे एमजीआईएमएस,

2014-15

सेवाग्राम, वर्धा (महाराष्ट्र) <mark>तथा कैंसर संस्थान</mark> (डब्ल्यू आई ए), अड्यार, चेन्नै में लगाया <mark>गया है । सिद्धा</mark>र्थ III-IV नामक मशीनें चार राष्ट्रीय कैंसर संस्थानों में प्रत्यावर्तनाधीन हैं ।

माननीय केंद्रीय मंत्री डॉ. ह**र्ष** व<mark>र्धन ने अगस्त</mark> 26, 2014 को इंडियन इंस्टिट्यूट ऑव हेड <mark>एंड नैक ऑन-</mark> कोलॉजी (आईआईएचएनओ), इंदौर में सीएसआईआर-सीएसआईओ द्वारा विकसित सिद्धार्थ-III 6 MV मेडिकल लाइनैक मशीन का शुभारम्भ।

दिल्ली मेट्रो के लिए भूकंपीय चेतावनी प्रणाली

सीएसआईआर-सीएसआईओ ने भूकंप चेतावनी संकेतक सृजित करने दिल्ली मेट्रो को बचाने के लिए पांच प्रणालियों की संरचना का प्रस्ताव रखा है। इन चार नोडों को मेट्रो नेटवर्क के विभिन्न कोनों पर स्थापित किया गया है तािक इस क्षेत्र में आने वाले विभिन्न भूकंपों को प्रग्रहण करने के लिए चेतावनी संकेतक सृजित किए जा सकें। इन सभी चारोंनोडों को डीएमआरसी एलएएन नेटवर्क से जोड़ा गया है। इस तकनीक को K-NET (क्योशिन नेटवर्क), जापान से भूकंप डाटा और काइनेमेट्रिक्स इंक से बेसाल्ट त्वरण लेखी के उपयोग से राष्ट्रीय राजधानी क्षेत्र में रिकॉर्डिकए गए भूकंपी डाटा के उपयोग से विधिमान्य बनाया गया है।

मशीन विजन (कैमरा) आधारित सिर/गर्दन की गति से नियंत्रित व्हील चेयर

सीएसआईआर-सीएसआईओ ने कैमरा आधारित सिर/गर्दन की गति से नियंत्रित व्हील चेयर के आदिप्ररूप का विकास किया है जो गर्दन से नीचे के पूरे शरीर के पूर्ण पक्षघात वाले लोगों द्वारा उपयोग में लाई जा सकती है जिनके सिर्फ गर्दन/सिर ही गति करते हैं। इस कस्टमाइज्ड व्हील चेयर के कौशल के लिए नियंत्रण सिग्नल्स मशीन विजन सिस्टम के इस्तेमाल से सिर/गर्दन की गति का पता लगाकर सृजित किए जाते हैं। इन कंट्रोल सिग्नल्स को व्हील चेयर की मोटर्स की गति को नियंत्रित करने के लिए मोशन कंट्रोलर को भेजे जाते हैं। व्हील चेयर की दिशा और गति नियंत्रण गर्दन की गति के घुमाने और स्थिर करने से क्रियान्वित किए जाते हैं। माइक्रो कंट्रोलर के इस्तेमाल से विकसित गति नियंत्रण और मोटर ड्राइवर्स की व्यावसायिक रूप से उपलब्ध पावर्ड व्हील चेयर पर जांच की जा रही है।

कोयना क्षेत्र, महाराष्ट्र में एक विशिष्ट वेधछिद्र भूकंप-लेखी नेटवर्क

कोयना — वरना क्षेत्र में गहन वैज्ञानिक प्रबंधन (ड्रिलिंग) कार्यक्रम के प्रारंभिक चरण के अंतर्गत सीएसआईआर-एनजीआरआई द्वारा 1200 मी. (चित्र 17) से 1520 मी. तक की रेंज की गहराई तक प्रवेधित आठ वेधछिद्रों में एक विशिष्ट वेधछिद्र भूकंपी नेटवर्क का परिनियोजन एक प्रमुख पहल थी। कोयना — वरना भूकंपों के हाइपोसेन्ट्रल मापदण्डों के परिशुद्ध निर्धारण के माध्यम से अधस्तल त्रुटि को शुद्धता से अंकित करना इस परिनियोजन के प्रमुख उद्देश्यों में से एक है। उपरिशायी बेसाल्ट परत और बहिस्तल (पृष्ठ) पर उच्च ध्विन स्तर के भी कारण, ब्रॉडबैंड भूकंप-लेखी नेटवर्क के माध्यम से प्राप्त किए गए भूकंप स्थानों की परिशुद्धता में प्रतिबंध है। अत: यह निर्णय लिया गया कि कोयना — वरना क्षेत्र के भूकंप की दृष्टि से सक्रिय भागों को सिम्मिलत करते हुए चयनित स्थानोंपर ग्रेनाइटी बेसमेंट में डेकन ट्रैप्स के माध्यम से प्रवेधित वेधछिद्रों को स्थापित किया जाए। स्थानीय तौरपर बनाए गए ट्राई-पॉड व्हील संयोजन के साथ रासाती, कुण्डी, नायारी और उखालू में कुल 4 वेधछिद्र भूकंपमापियां सफलतापूर्वक स्थापित की गई है।

शरद ऋतु-2014 के दौरान <mark>भारत बंगाल तथा की खा</mark>ड़ी के विभिन्न पर्यावरणों में वायुमं<mark>डल संबंधी उत्तम तथा स्थूल मो</mark>ड वाले एयरोसोल:

सीएसआईआर-एनआईओ ने एक ही साथ भूकेंद्रों (कुल्लू, पटिषाला, दिल्ली अजमेर, आगरा, लखनऊ, वाराणसी, गिरिडीह, कोलकाता, दार्जिलंग, जोरहाट, ईटानगर, इम्फाल, भुवनेश्वर तथा कड़पा) पर मापित मुख्यत भारत के सिंधु गंगा के मैदान और बंगाल की खाड़ी के समुद्री पर्यावरण में 20 जनवरी से 3 फरवरी, 2014 तक की अवधि में वितरित कणिकीय पदार्थ [पीएम2.5, पीएम 10 आकार के खण्ड तथा पूर्णतया निलंबित कणिकीय (टीएसपी)] के द्रव्यमान सांद्रणों को प्रस्तुत किया है। इस अध्ययन का मुख्य उद्देश्य शीत मानसून अवधि में कम स्तर वाली उत्तर-पूर्वहवा के प्रवाह के साथ ही बंगाल की खाड़ी में आईजीपी और सम्बद्ध क्षेत्रों के कणिकीय (पीएम2.5, पीएम 10 तथा टीएसपी) के महाद्विपीय बहिर्वाह परिमाण निर्धारित करना था। इस वर्तमान अध्ययन से आईजीपी क्षेत्र में एयरोसोल लदान की झलक मिलती है। इस अभियान के दौरान, उच्चतम औसत पीएम 2.5 (187.8+ 36.5µg m-3, रेंज 125.6-256.2 µg m-3), पीएम 10 (272.6+ 102.9µg m-3, रेंज 147.6-520.1 µg

2014-15

m-3) तथा टीएसपी ((325.0+ 71.5μg m-3, रेंज 220.4-536.6 μg m-3) द्रव्यमान सांद्रण मध्य तथा निचले आईजीपी मैदानों में वाराणसी, कोलकाता तथा लखनऊ में रिकार्ड किए गए थे। बंगाल की खाड़ी में लदे इन पीएम 2.5 (औसतन (41.3+ 119 μg m-3, रेंज 15.0-54.4 μg m-3) पीएम 10 (औसतन 53.9+ 18.9μg m-3, रेंज 30.1-82.1 μg m-3) तथा टीएसपी (औसत 78.8+ 29.7μg m-3, रेंज 49.1-184.5 μg m-3) को भू-केंद्रों से तुलना करने योग्य पाया गया था तथा संभाव्य महाद्वीपीय बहिर्वाह का पता चला। महाद्वीपीय क्षेत्र में, उच्चतम पीएम 2.5/पीएम10 अनुपात दिल्ली में रिकार्ड किया गया (0.87)। बंगाल की खाड़ी में (0.77) पीएम2.5/पीएम 10 अनुपात अधिक होना पाया गया तथा यह वाराणसी (0.80) तथा आगरा (0.79) से तुलनीय था।

समाज के लाभार्थ एस एण्ड टी अंतराक्षेप

रमॉल ट्रैक्टर कृषि शक्ति लांच किया

माननीय प्रधान मंत्री जी के 'मेक इंडिया मिशन' हेतु योगदान देते हुए सीएसआईआर-सीएमईआरआई ने भारत के छोटी जमीनों वाले किसानों के सशक्तीकरण हेतु कृषि शक्ति-स्मॉल रेंज (11.2 एचपी) डीजल इंजिन ट्रैक्टर का विकास किया है। इस ट्रैक्टर को माननीय मंत्री, विज्ञान एवं प्रौद्योगिकी तथा पृथ्वी विज्ञान और उपाध्यक्ष, सीएसआईआर डॉ. हर्ष वर्धन ने लांच किया। उन्होंने 5 ट्रैक्टर किसानों को सौंपे। डॉ. हर्ष वर्धन ने कहा कि 'इस विकास ने लंबे समय से महसूस किए गए प्रौद्योगिकी अंतराल को समाप्त किया है। कृषि उपकरणों की अत्याधुनिक प्रौद्योगिकी विकसित करने की अत्यावश्यकता है। ये उपकरण भारतीय कृषि जलवायु के लिए उपयुक्त हों और ऊर्जा दक्ष हों। ये कृषि उपकरण किसानों के परिश्रम को कम करने वाले हों।

पुष्प जैव-संसाधन (फ्लोरल <mark>बायो-रिसोर्स) के प्रयोग</mark> से अगरबत्तियों के निर्माण पर उद्यमी <mark>प्रशिक्षण</mark>

सीएसआईआर-सीमैप (सीआईएमएपी) द्वारा पुष्प एवं अन्य जैव-संसाधनों के प्रयोग से अगरबत्तियों के निर्माण पर उद्यमी प्रशिक्षण कार्यक्रमों का आयोजन किया गया। वर्ष के दौरान 90 से अधिक प्रतिभागियों ने भाग लिया। इसी तरह के दो प्रशिक्षण कार्यक्रम चिन्द्रकादेवी मन्दिर के समीप, लखनऊ स्थित सीएसआईआर- सीमैप (सीआईएमएपी) के महिला उद्यमी प्रशिक्षण सुविधा (डब्ल्यूईटीई) में आयोजित किये गए। प्रशिक्षाणियों को अगरबत्तियों को स्गाधित करने और पैक करने के बारे में भी बताया गया तथा उत्पादन एवं क्रय-विक्रय हेतु समूह बनाने के लिए प्रोत्साहित किया गया।

हार्ड रॉक क्षेत्र में भूमिगत जल संसाधनों की खोज तथा उसे स्थानीय लोगों में सप्लाई करना

सीएसआईआर-एनजीआरआई के पास तेलंगाना के नालगोण्डा जिले, जो कि एक जाना हुआ हार्ड रॉक क्षेत्र है, में स्थित एक क्षेत्र वेधशाला (फील्ड आब्ज़र्वेटरी) है। यह क्षेत्र बहुत कम वर्षा (~600 मिमी.), सिंचाई के लिए भूमिगत जल का अत्यधिक उपयोग और खराब जल प्रबंधन पद्धितयों के कारण वर्ष 2012 से पीने वाले पानी की कमी से ग्रसित है। सीएसआईआर-एनजीआरआई ने ऐसे क्षेत्रों में अपनी तकनीकियों के माध्यम से भूजल स्नोतों को ढूंढने में सहायता की।

सीएसआईआर-सेंटर फॉर हाई ऐल्टीट्यूड बायोलॉजी (CSIR-ceHAB)

सीएसआईआर-आईएचबीटी ने लाहौल और स्पीति के दूरस्थ आदिवासी क्षेत्र में हाई ऐल्टीट्यूड जैविकी हेतु सीएसआईआर-केन्द्र (CSIR-ceHAB) स्थापित किया है जो जलवायु परिवर्तन, जैव संसाधन को संरक्षित करने तथा निश्चयात्मक वृद्धि के लिए स्थानीय लोगों को ज्ञान का स्थांतरण करने के विषय में हाई ऐल्टीट्यूड जैव-प्रणालियों से संबंध रखने वाले अध्ययनों पर बल देता है। सीएसआईआर-सीएचएबी में एक फूड प्रोसेसिंग यूनिट (खाद्य प्रसंस्करण इकाई) स्थापित किया गया है। हाल ही में फूड व ऐग्री-प्रोसेसिंग से संबंधित सीएसआईआर तकनीकी जानकारी केलांग में आदिवासी मेले में प्रदर्शन-मंजूषा में प्रदर्शित की गई तथा विकासशील किसानों के लाभ हेतु कूटू (बक व्हीट) से नए उत्पादों के निर्माण और क्षेत्र की प्रमुख फसलों मटर व पत्तागोभी के लवण जलीय संबंधी प्रशिक्षण का आयोजन किया गया।

2014-15

उत्तर-पूर्व के लिए नई रेंज के चर्म उत्पाद

सीएसआईआर-सीएलआरआई ने सीएसआईआर-एनईआईएसटी के सहयोग से उत्तर-पूर्वी क्षेत्र में व्यापक सर्वेक्षण किया है। इस सर्वेक्षण से प्राप्त आगतों के आधार पर सीएलएडी डिजाइन स्टूडियो में डिजाइनरों ने नए किस्म के उत्पादों का डिजाइन एवं विकास किया। सीएसआईआर ने चर्म कारीगरों के अधिक मुनाफे के लिए उत्तर पूर्व में चर्म उत्पादों के कलात्मक आकर्षण, मानकीकरण तकनीकियों और नई रेंज को आरंभ किया है। हैण्ड बैग एवं अन्य चर्म उत्पादों को भारत के उत्तर-पूर्व के जनजातीय लोगों द्वारा धारण किए जाने वाले आभूषणों, परिधानों एवं कलाकृतियों पर आधारित उत्तर-पूर्व के एथिनक डिजाइनों और सामग्री से तैयार किया गया है।

आर्टिमिशिया अनुआ कृषि (खेती) का अर्थशास्त्र

आर्टिमिशिया अनुआ फसल मलेरिया रोधी औषधि के रूप में प्रयोग की जाने वाली आर्टिमिशनिन का एक महत्वपूर्ण स्रोत है। वर्तमान अध्ययन सीएसआईआर-सीमेप (सीआईएमएपी) द्वारा उत्तर प्रदेश में किया गया था। चुने हुए 80 किसानों से लागत पक्ष पर प्रारंभिक डाटा एकत्रित किया गया। यह देखा गया कि कुल परिवर्तनीय लागत रु. 21.84 प्रति हेक्टेयर पाई गई। कृषि (खेती) की लागत का मुख्य भाग मानव श्रम का था। कुल मुनाफा रु. 87.63 प्रति हेक्टेयर थी। 4.01 के लाभ लागत अनुपात के साथ परिवर्तनीय लागत पर अंतिम मुनाफा रु. 65.75 पाया गया था। इस फसल (R2 मूल्य) में अनुमानित संसाधन उपयोग दक्षता 0.907 पाई गई थी जो दर्शाती है कि आर्टिमिशिया अनुआ में 91 प्रतिशत विविधतायें कारण चरों जैसे कि मानव श्रम, बीज व नर्सरी बढ़ोतरी, खाद व उर्वरक और परिवहन प्रभारों से प्रभावित थीं।

जम्मू एंड कश्मीर के बाढ़ पीडि़तों के लिए सीएसआईआर के राहत संबंधी प्रयास

जम्मू और कश्मीर राज्य में सितंबर 2014 में प्रलयकारी बाढ़ से भारी नुकसान हुआ। सीएसआईआर की घटक प्रयोगशालाएं अपने द्वारा विकसित विभिन्न एस एंड टी अंतराक्षेपों द्वारा पेय जल उपलब्ध कराने के लिए आगे आयी हैं। इस उद्देश्य के लिए प्रदर्शित अंतराक्षेपों में शामिल हैं - 4000 लीटर प्रित घंटे की धारिता वाला जल शोधन संयंत्र, 10-12 लीटर की धारिता का घरेलू जल फिल्टर, स्टैंड्स तथा बकेट्स (एनईईआरआई-जार) वाला त्वरित जल फिल्टर, हैंड पंप वाला मेम्ब्रेन फिल्टर, सीएसआईआर ने भी अन्य राहत संबंधी पदार्थ उपलब्ध कराकर योगदान दिया। इसके अतिरिक्त, सीएआईआर-आईआईएम द्वारा ऊधमपुर जिले में जल शोधकों (एपी-700) का संस्थापन और अन्य संबंधित सहायता करने के उद्देश्य से तीन दिवसीय मोबाइल राहत शिविर का आयोजन किया गया। इस राहत शिविर में, दौरा किए गए क्षेत्र ब्लाक पंचारी, ब्लाक गोधीं, पंजर, मोंगरी, कल्सोटी, कैथगली तथा जिला ऊधमपुर के आस-पास के अन्य कई क्षेत्र शामिल थे। इसके अतिरिक्त सीएसआईआर-आईआईआईएम ने जिला जम्मू के तवी आईलैंड, सुरे चक तथा मकवाल बाढ़ प्रभावित गांवों में तीन दिन राहत कैंप लगाए जिसके अंतर्गत इन क्षेत्रों के निवासियों के दवाइयां वितरित करने के अतिरिक्त अलग-अलग धारिताओं की जल शोधन इकाइयां स्थापित की गई।

संसाधन आधार

38 प्रयोगशालाएं 39 दूरस्थ केन्द्र 3 नवोन्मेष कॉम्प्लेक्स 5 इकाइयां

रु. 3334.88 करोड़ की बजटीय सहायता रु. 1545.00 करोड़ योजनागत निधि रु. 1789.88 करोड़ गैर-योजनागत निधि

> 13753 स्थायी स्टाफ (दिनांक 01.03.2015 को)

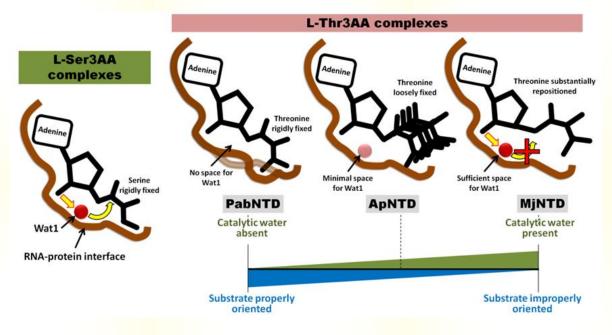
इसमें 3835 वैज्ञानिक 6119 तकनीकी एवं सहायक स्टाफ 3799 प्रशासनिक स्टाफ सम्मिलित हैं

महत्वपूर्ण आंकड़े

निष्पादन सूचक 2014-15

बौद्धिक संपदा	राष्ट्रीय वैज्ञानिक एवं तकनीकी मानव संसाधन विकास
5800 से अधिक शोध प्रकाशन	रिसर्च फेलोज/एसोसिएट्स को
वर्ष 2014 के दौरान भारत के कुल शोध निर्गत का 9.61%	सहायता प्रदान की गई : 8500
3050 पेटेंट प्रवृत्त (विदेश)	सीनियर रिसर्च एसोसिएट्स (एसआरएएस): 136
448 विदेश में फाइल किए गए	
1508 पेटेंट प्रवृत्त (भारत)	रिसर्च स्कीमों को सहायता प्रदान की गई : 1240
310 भारत में फाइल किए गए	एमेराइट्स वैज्ञानिक इन पोजिशन : 153

2014-15


1.0 विज्ञान एवम् प्रौद्योगिकी योगदान

1.1 जीव विज्ञान

1.1.1 वैज्ञानिक उत्कृष्ट<mark>ता</mark>

एडिटिंग/प्रूफरीडिंग क्रियाविधि: उत्प्रेरण एवं सबस्ट्रेट विशिष्टता दोनों के लिए साइड चैंस महत्वपूर्ण नहीं हैं।

tRNA(Thr) से जुड़े सेरीन को समाप्त करने वाले आर्कीएल एंजाइम ThrRS के अध्ययन में सीएसआईआर-सीसीएमबी ने वास्तविक प्रोटीन संश्लेषण को बढ़ाने वाली मूल क्रियाविधि का उल्लेख किया है। यह कार्य नेचर कम्यूनिकेशंस में प्रकाशित हुआ एडिटिंग/प्रूफरीडिंग क्षेत्र को सिद्ध करने के लिए म्यूटेशंस से सम्बद्ध उच्च-वियोजन संरचनात्मक विश्लेषण के इस्तेमाल से सभी साइड चैंस म्यूटेटिड थी जिन्होंने यह दर्शाया कि उत्प्रेरण में वे प्रत्यक्ष भूमिका नहीं निभाती। इसके अतिरिक्त tRNA 2'OH को 2' डीऑक्सी अथवा 2'F में परिवर्तन करने पर एंजाइमिक गतिविधि समाप्त हो जाती है जो यह दर्शाती है कि एंजाइम RNA आधारित उत्प्रेरक है (चित्र-1)। इसके अतिरिक्त सबस्ट्रेट बंधन में सम्मिलत अवशेषों के म्यूटेशन सेरीन/थ्रीओनाइन इंटेक्ट के अंतर को समाप्त करता है जो यह दर्शाता है कि साइड चैंस का उत्प्रेरण और सबस्ट्रेट विशिष्टता दोनों में से किसी में कोई भूमिका नहीं निभाती हैं। 18 उच्च वियोजन संरचनाओं की श्रृंखला सिहत पहली बार यह दर्शाया गया कि जल अणु स्थित है जहां यह सही सबस्ट्रेट (L-ser) के हाइड्रोलिसिस के लिए होना चाहिए और दूसरा प्रोटीन की मुख्य श्रृंखला एवं RNA के बीच फिर से गतिशील होने से पता चलता है कि कॉग्नेट सबस्ट्रेट (Thr RNA(Thr)) स्थिर रूप से जम जाता है परन्तु पूर्व में प्रस्तावित ''डबल-सीव'' मॉडल के विपरीत जल अपघटन नहीं हो सकता।

चित्र: 1.1 आरेख दर्शाता है कि एंजाइम RNA आधारित उत्प्रेरक है।

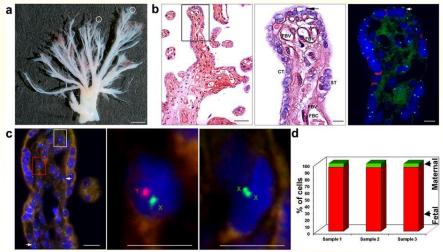

पशुओं में पिंडाक्ष निर्माण एवं विविधता में नई अंतर्दृष्टि

पशु पिंड योजना को ब्लूप्रिंट हॉक्स जीनों द्वारा नियंत्रित किया जाता है जिसमें होमिओ बॉक्स नामक सामान्य संरचनात्मक विशेषता होती है और ये जीनोम में जीनों के क्लस्टर के रूप में स्थित होते हैं। हॉक्स क्लस्टर की एक दिलचस्प विशेषता है कि जीनों के विकसित हो रहे भ्रूण के पिंडाक्ष के साथ क्रम में निष्पीडित किया जाता है जो उस क्रम के समान है जिसमें इन्हें इनके जिनोमिक लोकस में व्यवस्थित किया जाता है। तथापि, यह देखा गया है कि लगभग समग्र पिंडाक्ष में एक से अधिक हॉक्स जीन दिए गए क्षेत्र में निष्पीडित किए जाते हैं। मौजूदा विचार है कि जब एक साथ निष्पीडित किया जाता है, यह

2014-15

पश्च जीन है जिसकी प्रमुख भूमिका होती है जिसे "पश्च प्रधानता नियम" के नाम से जाना जाता है। सीएसआईआर-सीसीएमबी ने फ्रूट फ्लाई ड्रोसोफिला मीलेनोगेस्टर के हॉक्स क्लस्टर का आनुवंशिक तौर पर डिजाइन किया है और अद्वितीय पिंड विधि से मक्खी उत्पन्न की है। PLoS जेनेटिक्स में प्रकाशित कार्य के परिणाम दर्शाते हैं कि "पश्च प्रधानता नियम" समरूप से वैध नहीं है। यह कार्य दर्शाता है कि विकास के बाद की अवस्थाओं में Abd-A नामक अग्र हॉक्स जीन और Abd-B नामक पश्च हॉक्स जीन दोनों का निष्पीड़न समान पिंड भाग में अपेक्षित है। जिन क्षेत्रों में Abd-B भी निष्पीडित होती है उन क्षेत्रों से Abd-A के कार्य समाप्त करके क्यूटिकल स्ट्रक्चर्स का सम्पूर्ण लोप दिखाई देता है जो यह दर्शाता है कि यह अनावश्यक नहीं है जैसा कि पहले मान्यता थी। ये खोजें दर्शाती हैं कि जबिक पश्च जीन पहचान निर्धारित करती है, अग्रजीन अंग के विकास और निर्माण हेतु आवश्यक है। Abd-A हेतु विकास संवर्धन की यह खोज यह भी स्पष्ट करती है कि कुछ मानव कैंसरों में हॉक्स जीनों को गलत ढंग से निष्पीडित क्यों किया जाता है। प्रारंभिक विकासात्मक अवस्था पर कोशिका समानता का निर्धारण करने वाली हॉक्स जीन का बाद की विकासात्मक अवस्था में कोशिका फैलाव में अलग भूमिका होती है। इन खोजों से पता चलता है कि हॉक्स जीनों में कुछ कैंसरों में संभाव्य औषध लक्ष्य हो सकते हैं।

चित्र:1.2 अंतिम विकासात्मक अवस्था में जब Abd-A का कार्य समाप्त हो जाता है तो सामान्य मक्खी के पेट की तुलना की गई तो पश्च भाग सहित समग्र पेट में क्यूटिल का निर्माण नहीं होता है जिसका निर्धारण पश्च जीन Abd-B द्वारा किया जाता है। यह ध्यान दिया जाए कि Abd-B इस म्यूटेंट में बाधा नहीं होती है। यह निर्धारित करता है कि Abd-A 'पश्च-प्रधानता नियम' का विरोध करता है और पश्च जीनों के क्षेत्र में भी क्यूटिकल के निर्माण में महत्वपूर्ण भूमिका निभाता है। यह खोज इस हॉक्स जीन के कोशिका फैलाव में नॉन-होमीओटिक कार्यों तथा अंग निर्माण को दर्शाता है।


मानव संबंधी बीजांडासन की अंतिम जटायु-अंकुरिका से शुद्ध भ्रूण और मातृक मध्योतक स्ट्रोमल कोशिकाओं का प्रवर्धन

मानव भ्रूण मध्योतक स्ट्रोमल कोशिकाओं का अंतर्जीवे दीर्घावधि प्रवर्धन भ्रूण ऊत्तक स्रोतों की सीमित उपलब्धता एवं उपर्युक्त क्रियाविधियों की कमी के कारण दुर्गाह्य साबित हुआ है। नेचर साइंटिफिक रिपोर्ट्स में प्रकाशित अनुसंधान में, सीएसआईआर-सीसीएमबी ने सामान्य मानव संबंधी बीजांडासन के

2014-15

अंतिम जटायु अंकुरिका (टीसीवी) के टिप्स के भीतर भ्रूण और मातृक कोशिकाओं की उपस्थित दर्शाई है। मातृक बनाम भ्रूण कोशिकाओं की आसंजनशील एवं अभिगामी गुणों में निहित अंतरों का उपयोग करते हुए इस कार्य ने दोनों किरमों की कोशिका का शुद्ध एमएससी संवर्धन स्थापित किया था। प्रत्येक संवर्धन की उत्पत्ति और शुद्धता को X-Y गुण सूत्र विशिष्ट फ्लूओरीसेंस स्वस्थाने संकरण (FISH) और लघु अनुबद्ध पुनरावर्ती (एसटीआर) जीनोटाइपिंग द्वारा पृष्टि की गई (चित्र 1.3)। मानव संबंधी बीजांडासन की टीसीवी में भ्रूण और मातृक कोशिकाओं की उपस्थिति का यह पहला प्रदर्शन है तथा टीसीवी से शुद्ध भ्रूण एमएससी संवर्धकों से प्राप्त प्रथम रिपोर्ट है। एकल ऊत्तक से वयस्क एवं भ्रूण एमएससी के शुद्ध संवर्धकों की सहगामी उपलब्धता वयस्क और भ्रूण एमएससी के बीच आनुवंशिक एवं पश्चजात विभेदों की तुलना करने तथा साथ ही पुनर्योजी औषधि में आधारित चिकित्साओं के नए मॉडलों का सृजन करने के लिए बेहतर प्रणाली उपलब्ध कराती है।

चित्र: 1.3 (क) मातृक पतनिका की <mark>समाप्ति के बाद जरायु</mark> अंकुरिका (स्केल बार, अएमएम)। गोला बनाए गए टर्मिनि <mark>के छोटे टुकडों से मा</mark>तृक एवं भ्रूण कोशिकाओं को पृथक किया गया (१एमएम² क्षेत्र)।

चित्र: 1.3 (ख) अंतिम अंकुरिका और उनसे मेल खाते नर/मादा कोशिका विशिष्ट FISH विश्लेषण के लंबवत खंड में एच एंड ई चिह्नित ऊतकीय विशेषताएं। बायां पैनल न्यून आवर्धन (स्केल बार, 50 μ m) दर्शाता है और दाएं पैनल उच्चतर आवर्धन पर बॉक्स बनाए गए क्षेत्र दर्शाते हैं (स्केल बार, 10 μ m)। साइटोट्रोफोब्लास्ट (सीटी), सी-सीयोट्रोफोब्लास्ट (एसटी), भ्रूण रक्त नाड़ी (एफबीवी), भ्रूण रक्त कोशिकाएं (एफबीसी) और साइटोट्रोफोब्लास्ट परत के भीतर मातृक कोशिका देखी गई हैं।

चित्र: 1.3 (ग) अंतिम जरायु अंकुरिका के लंबवत खंड में नर भ्रूण एवं मातृक कोशिकाओं का उच्च वियोजन FISH-आधारित का पता लगाना; बायां पैनल न्यून आवर्धन दर्शाता है (स्केल बार, 50µm) एवं दाएं पैनल उच्चतर आवर्धन पर बनाए गए बॉक्स क्षेत्र दर्शाते हैं (स्केल बार, 10µm)। तीर के निशान अंकुरिकाओं में दो और मातृक कोशिकाओं को दर्शाते हैं।

चित्र:1.3(घ) एक्स और वाई विशिष्ट-गूण सूत्र FISH विश्लेषण (n=3) से मातृक (हरित 5%) और नर भ्रूण कोशिकाओं (लाल, 95%) का प्रतिशतता वितरण प्राप्त हुआ।

अन्तर्जीवे न्यूरोन्स में ग्लूकोज प्रवाह मापकर मस्तिष्क के मेटाबोलिज्म का मूल्यांकन करना

सीएसआईआर-सीसीएमबी ने विभिन्न गतिविधि स्थितियों के अंतर्गत न्यूरोन्स में ग्लुकोज के मेटाबॉलिज्म का अध्ययन करने के लिए 13 सी लेवल लगे ग्लूकोज के इंप्यूजन के साथ अंतर्जीवे 13 सीएनएमआर का इस्तेमाल किया है। उन्होंने ट्राइकार्बोक्सीलिक अम्ल (टीसीए) चक्र में ग्लूटामेट-ग्लूटामाइन न्यूरोट्रांस्मीटर चक्र और न्यूरोनेल ग्लूकोज ऑक्सीकरण के प्रवाहों में वृद्धि के बीच प्रत्येक के लिए अलग-अलग सम्बन्ध स्थापित किए थे। यह संबंध एस्ट्रोसाइट्स में ग्लाइकोलाइटिक एटीपी और एस्ट्रोसाइट से न्यूरोन लैक्टेट शटलिंग से सम्बद्ध काल्पनिक तंत्र के अनुरूप था। बेसलाइन और उच्च गतिविधि वाली स्थितियों के अंतर्गत चूहों के मस्तिकों से अलग किए गए नर्व टर्मिनल्स में ग्लाइकोसिस और टीसीए चक्र के माध्यम से ग्लूकोज प्रवाह का 2-फ्लूओरो-2-डीऑक्सी-डी-ग्लूकोज के इस्तेमाल से मूल्यांकन किया गया। अंतर्जीवे समान स्थितियों में पूर्व में मापी गई कॉर्टिकल न्यूरोनल ग्लूकोज ऑक्सीकरण में वृद्धि से पूर्ण रूप से अनुकूल नर्व टर्मिनल्स में 2-फ्लूओरो-2 डीऑक्सी-डी-ग्लूकोज-6-फॉस्फेट में वृद्धि दर्शाती है कि नर्व टर्मिनल्स में ग्लूकोज के प्रत्यक्ष अपटेक एवं ऑक्सीकरण सुप्त एवं सक्रिय दोनों स्थितियों में बहुत जरूरी हैं। एस्ट्रोसाइट-से न्यूरोन लैक्टेट शटल हाइपोथेसिस के प्रत्यक्ष अन्तर्विरोध में ये परिणाम दर्शाते हैं कि न्यूरोन्स ग्लूकोज की उचित मात्रा का मेटाबोलाइज करते हैं। प्रोसिडिंग्स ऑव नेशनल एकेडमी ऑव साइंसेज, यूएसए में प्रकाशित इस खोज में सामान्य ब्रेन मेटाबोलिज्म और रोग में इसके परिवर्तन हेतु महत्वपूर्ण संबंध हैं।

मुख्य कोशिकाओं में माइकोबैक्टीरियल प्रवेश हेतु मेम्ब्रेन कॉलेस्टेरॉल आवश्यकता का अवलोकन करना

2014-15

सीएसआईआर-सीसीएमबी ने सीरोटोनिन रिसेप्टर के कार्य और लीश्मैनिया संक्रमण में मेम्ब्रेन कॉलेस्टेरॉल की आवश्यकता की जांच करता रहा। इस वर्ष के दौरान सीएसआईआर-सीसीएमबी इंट्रा-लेब सहयोग से माइक्रोबेक्टीरियल संक्रमण में मेम्ब्रेन मॉलेस्टेरॉल की आवश्यकता की जांच की। माइक्रोबेक्टीरिया अंतराकोशिकीय रोगजनक हैं जो मुख्य बृहत्त भक्षकाणु के भीतर आक्रमण कर सकते हैं एवं जीवित रह सकते हैं और ये विश्वभर में मृत्यु एवं रूगणता के मुख्य कारण हैं। माइक्रोबेक्टीरियम के समावेशन से जुड़े आण्विक तंत्र को मामूली तौर पर समझा गया है। सहयोगी कार्य ने बृहत्त भक्षकाणुओं में माइक्रोबेक्टीरियम के प्रवेश में मुख्य मेम्ब्रेन कॉलेस्टेरोल की भूमिका को दर्शाया है। विभिन्न प्रकार के दृष्टिकोणों का उपयोग करके मेम्ब्रेन कॉलेस्टेरॉल की उपलब्धता की मॉड्यूलेटिंग द्वारा सीएसआईआर-सीसीएमबी ने दर्शाया है कि ईष्टतम मुख्य प्लाज्मा मेम्ब्रेन कॉलेस्टेरोल माइक्रोबेक्टीरिया के प्रवेश हेतु आवश्यक है। ये परिणाम माइक्रोबेक्टीरियम के प्रवेश में मुख्य मेम्ब्रेन लिपिड घटकों की भूमिका को समझने में सहायता करते हैं और ये 'कैमिस्ट्री एंड फिजिक्स ऑव लिपिड़' में प्रकाशित किए गए।

नॉक-आउट चूहा मॉडल से मधुमेह के प्रभावों को बदलने हेतु नए लक्ष्य के रूप में Wdr 13 का पता चला

सीएसआईआर-सीसीएमबी ने मधुमेह से पीडित चूहा मॉडल में Wdr 13 जीन को आनुवंशिक तौर पर समाप्त कर दिया है और पैनक्रीएटिक आइलेट्स के द्रव्यभार में अत्यधिक वृद्धि का पता लगाया है। यह मधुमेह से पीडित चूहों में हाइपर इन्सूलीनैमिया और उन्नत ग्लूकोज क्लीयरेंस के कारण हुआ। सारांश में जीन का न होना रोग के निदान में सुधार से सीधे तौर पर परस्पर संबंधित रहा है। मधुमेह से पीडित चूहा मॉडल्स में पैनक्रिएटिक बीटा कोशिकाएं पूरी तरह से नष्ट हो जाती हैं और यह बताया गया है कि Wdr 13 विलोपन इस रोग को उल्ट देता है। डायबीटोलोजिया में प्रकाशित किए गए इस कार्य से टाइप 2 मधुमेह हेतु संभावित औषध लक्ष्यों हेतु नए पाथवेज का पता चलता है। दुगुने उत्परिवर्ती चूहों में बीटा कोशिका द्रव्य में वृद्धि पैंक्रिआज, यकृत और वसा ऊत्तकों के शोथ में सम्मिलित जीनों के निष्पीडन में अत्यधिक कमी हुई है। परिसंचारी ट्राइग्लाइसराइड्स और लीवर ट्राइग्लाइसराइड अवयव इन चूहों में अत्यधिक न्यूनतम थे जिससे मोटापे द्वारा सृजित मेटाबॉलिक असंतुलनों में सम्पूर्ण सुधार का पता चलता है। यह कार्य मधुमेह में Wdr 13 प्रोटीन के निष्पीडन को चयनात्मक रूप से कम करने के लिए भेषज विज्ञानियों के लिए विशेष रूप से नए लक्ष्य प्रस्तुत करता है।

यूरोपवासियों की आनुवंशिक कल्पना: प्राचीन मानव जीनोमों से वर्तमान यूरोपवासियों <mark>के तीन पैतृक जनसमुदायों</mark> का पता चला है।

सीएसआईआर-सीसीएमबी ने जर्मन के आठ ~8000-वर्ष बुढे शिकार-संग्राहकों के जीनोमों की सीक्वेंसींग की है। इनकी अन्य प्राचीन जीनोमों की 2345 समकालीन जीनोमों से तुलना की गई थी जिन्होंने यह दर्शाया कि वर्तमान में अधिकतर यूरोपवासी कम से कम तीन अत्यधिक भिन्नता रखने वाले जनसमुदायों से उत्पन्न हुए हैं। पश्चिमी यूरोपवासी शिकार संग्राहक, जिन्होंने सभी यूरोपवासियों की वंशावली में योगदान दिया है परन्तु निकट पूर्ववासियों में नहीं; उत्तर पुराषाणीय युग के साइबेरियनों से संबंधित प्राचीन उत्तर युरेशियावासी, जिन्होंने युरोपवासियों और निकट पूर्ववासियों दोनों के लिए योगदान दिया; और यूरोप के आदिम किसान, जो मुख्यत: निकट पूर्व मूल के थे परन्तु इन्होंने पश्चिम यूरोप के शिकार-संग्रह से संबंधित वंशावली को बनाए रखा। इन जन समुदायों के बीच गहरे संबंधों की मॉडलिंग करके, नेचर में प्रकाशित किए गए इस अध्ययन 'बुनियादी यूरेशियाई' जन समुदाय आदिम युरोपीयन किसानों की ~44% वंशावली की थी जो अन्य गैर-अफ्रीकन वंशावलियों की विविधता से पहले विभाजित हो गए:

चित्र:1.4 इस अध्ययन में उपयोग में <mark>लाए गए प्राचीन जैविक नमू</mark>नों की खुदाई; लोस्चवार स्कल (ऊपर बाएं); स्टट गार्ट स्कल (ऊपर दाएं); मोटाला, स्वीडन में कैनल जोर्डन में खुदाई (नीचे बाएं); मोटाला 1 स्वस्थाने (नीचे दाएं)

2014-15

महिलाओं में (गर्भावस्था के <mark>दौरान) होमोसिस्टीन</mark> स्तरों को बढाने वाले आनुवंशिक परिवर्<mark>तों से जन्म के वक्त</mark> शिशु के वजन में कमी होने और उनके बच्चों में भविष्य में मधुमेह के खतरे का अनुमान लगाना

टाइप 2 मधुमेह (टी2डी) प्रायः वयस्कता में दिखाई देती हैं जब रोग निरोधी दृष्टि से विभिन्न समस्याएं जुड़ी हों। अतः प्रारंभिक अवस्था में जोखिम कारकों की पहचान करने में इसकी रोकथाम हेतु आनुवंशिक परीक्षण मधुमेह के बढ़ने के खतरे में परिवर्तन ला सकते हैं। जन्म के वक्त शिशु के वजन में कमी होना (एलबीडब्ल्यू; <2500g) भारत में अत्यधिक सामान्य है। जन्म के वक्त शिशु के वजन में कमी न सिर्फ पूर्वकालीन मृत्यु के लिए मजबूत जोखिम कारक है बल्कि कार्डियो मेटाबॉलिक सिंड्रोम के भावी खतरे से भी जुड़ा है। मातृक पोषण अवयवों की पहचान करना जो उनके बच्चों में भावी असंचारी रोगों (एनसीडी) के खतरे की संभावना बना सकता है, जो संकटपूर्ण है। सीएसआईआर-सीसीएमबी के वैज्ञानिकों एवं केईएम अस्पताल एवं अनुसंधान केन्द्र (केईएमएचआरसी), पुणे के चिकित्सकों ने स्वास्थ्य एवं वयस्कता रोगों की विकासात्मक उत्पति (डीओएचएडी) विषयक सहयोगात्मक अध्ययन प्रारंभ किए हैं जो गर्भावस्था से पहले और इसके दौरान अंतराक्षेप हेतु अवसर प्रदान करते हैं जिनका भावी पीढियों हेतु निहितार्थ है।

प्रारंभिक अध्ययनों में यह दर्शाया गया था कि गर्भावस्था के दौरान अधिक होमोसिस्टीन स्तरों वाली माताओं के जन्म लेने वाले बच्चे मोटे होते हैं और इंसूलिन प्रतिरोधी होते हैं। भविष्य में मधुमेह के विकास हेतु दो महत्वपूर्ण जोखिम घटक हैं। होमोसिस्टीन कार्बन मेटाबोलिज्म (ओसीएम) में महत्वपूर्ण मेटाबोलाइट है जो जीन निष्पीडन को निर्धारित करने वाले डीएनए मेथीलेशन को प्रभावित करता है। होमोसिस्टीन स्तरें को स्थिर रूप से प्रभावित करने वाले परिवर्त इस सहयोग की कारणता की पृष्टि करने के लिए उपयोगी हो सकते हैं। मेथीलेनटेट्राहाइड्रोफोलेट रीडक्टेज (एमटीएचएफआर द्वारा विकोडित) ओसीएम में महत्वपूर्ण एंजाइम है जो होमोसिस्टीन को मेथिओनाइन में बदलने में सहायक होता है। वर्तमान अध्ययन में संवर्धित होगोसिस्टीन स्तरों के लिए आनुवंशिक प्रॉक्सी के रूप में एमटीएचएफआर जीन में पॉलीमॉर्फिज्म का उपयोग करने से यह प्रदर्शित किया गया था कि जन्म के समय शिशु के वजन में कमी गर्भावस्था के दौरान मातृक होमोसिस्टीन स्तरों में वृद्धि से सहसम्बन्ध रखती है। यह प्रेक्षण ओसीएम और मोटापे और मधुमेह के धातक निर्धारण पर इसके संबंधित पोषकों के 'वास्तविक' प्रभाव को कम करते हैं तथा दृष्टापूर्वक ईगित करते हैं कि कम होते मातृक होमोसिस्टीन सान्द्रण तीव्र वृद्धि में सुधार कर सकते हैं। जनसांख्यिकीय और पौषणिक विभेदों वाले भौगोलिक रूप से अलग-अलग क्षेत्रों के दो स्वतंत्र दल सम्पूर्ण देश में अपने प्रेक्षणों का सामान्यीकरण दर्शाते हैं।

भारतीय उपमहाद्वीप की माताओं में यूरोपीय माताओं की तुलना में फोलेट और विटामिन बी12 के बीच अलग संतुलन है; पर्याप्त फोलेट शाकाहारी आहार और अनुपूरक के कारण होता है परन्तु बी12 की कमी पशुओं से प्राप्त खाद्य कम ग्रहण करने से होती है। लगभग 50% भारतीयों के बी12 के स्तर कम होते हैं लेकिन सिर्फ ~4% में फोलेट की कमी होती है। यूरोप वासियों के विपरीत जिनमें कम फोलेट हाईपरहोमोसिस्टीनेमिया में मुख्य सहायक होता है, विटामिन बी12 भारतीय जनसमुदाय में फोलेट की तुलना में हाइपर होमोसिस्टीनेमिया के खतरे को अधिक बढ़ाता है। न्यूरल ट्यूब दोषों को रोकने में फोलेट की भूमिका सुप्रमाणित है और यह विकसित राष्ट्रों में गर्भधारण के पहले और आस-पास की अवधि में फॉलेट ग्रहण करने में सुधार लाने की प्रक्रिया का वर्तमान मानक है। माता में न्यून बी12 और उच्च फोलेट का असंतुलन बच्चे में इंसूलिन प्रतिरोधकता को पहले से बतलाता है और बच्चे में फोलेट की अधिकता से अधिक मोटेपन का पता लगता है। इस प्रकार माताओं में संतुलित बी12 और फोलेट पोषण फोलेट की अधिकता होने से बचाने से होमोसिस्टीन स्तरों और भूण वृद्धि में सुधार हो सकता है और नए जन्मे बच्चों की आखिरी स्तरों में मधुमेह एवं सीवीडी के खतरे को कम करते हैं।

इन परिणामों को संपादकीय स<mark>मीक्षा सहित इंटरने</mark>शनल जर्नल ऑव ऐपिडेमियोलॉजी में प्र<mark>काशित किया गया</mark> था। वर्तमान खोज में भावी पीढियों में गैर-संचारी रोगों यथा मधुमेह और कार्डि<mark>यो वेस्क्यूलर</mark> के खतरे को रोकने में महत्वपूर्ण लोक स्वास<mark>्थ्य निहितार्थ है।</mark>

रिवस चूहों में बहु औषि प्रतिरोधक प्लाज्मोडियम योइली के विरुद्ध मलेरिया रोधी गतिविधि <mark>के उच्च क्रम</mark> सहित नए मौखिक रूप से सक्रिय एमिनो और हाइड्रॉक्सी क्रियाशील 11-एजा-आर्टिमिसिनिंस और उनके व्युत्पन्न

प्रारंभिक सामग्री के तौर पर आर्टिमिसिनिन 1 और 2 नए एमिनो और हाइड्रॉक्सी-क्रियाशील 11-एजाआर्टिमिसिनिंस 9 और 11 तथा उनके व्युत्पन्नों 12 a-g, 13 a-g, 14 a-g, 15 a-c को स्विस चूहों में बहु औषध-प्रतिरोधक प्लाज्मोडियम मोइली के विरुद्ध ऑरल रूट द्वारा मलेरिया रोधी

2014-15

गतिविधि हेतु तैयार जांच किए गए हैं जबकि एजा आर्टिमिसिनिंस 9एवं 11 ने सिर्फ साधारण गतिविधि दर्शाई, उनके अनेक व्युत्पन्नों ने मलेरिया-रोधी उच्च गतिविधि क्रम दर्शाया। इस शृंखला के अत्यधिक सिक्रय यौगिक बाई फीनाई-आधारित यौगिक 13f ने क्रमशः 12mg/kg x 4 दिवस एवं 6mg/kg x 4 दिवस पर संक्रमित चूहों को 100% एवं 80% सुरक्षा प्रदान की। 12f, 13f, 13f, 13f, 13f एवं 147 यौगिकों ने 12f, 2f दिवस पर 100% सुरक्षा दर्शाई जबिक 12f-c, 14f-c, 14f-e, 14f-e, 15f-c यौगिकों ने 24f-g/kg x 4 दिवसों पर सुरक्षा के समान स्तर दर्शाएं। चिकित्सीय तौर पर उपयोगी औषधि f-आर्टीथर ने इस मॉडल में 48f-mg/kg x 4 दिवस पर 100% सुरक्षा और 24f-g/kg x 4 दिवस पर 20% सुरक्षा प्रदान की।

एक्टिन बन्धन मैक्रोलाइड राइजोपोडिन का सुव्यवस्थित संश्लेषण

यूकेरियोटिक कोशिकाओं में साइटोस्केलटन का एक मुख्य कारक और कोशिका आकार; कोशिका विभाजन, गतिशीलता एवं आसंजन जैसे अनेक महत्वपूर्ण कोशिकीय कार्यों के लिए जिम्मेवार एक्टिन विभिन्न रोगों के लिए औषधियों के विकास हेतु आकर्षक लक्ष्य पाया गया है। एक्टिन साइटोस्केलटन की गतिकी को बाधा पहुंचाने वाला लघु प्राकृतिक उत्पाद इसके कार्य से सम्बद्ध जटिल तंत्रों को समझने के लिए महत्वपूर्ण आण्विक खोज के तौर पर कार्य करता है। राइजोपोडिन एक ऐसा ही नवीनबंधन पॉलीकेटाइड है। सीएसआईआर-सीडीआरआई ने 19 दीर्घकालिक रेखीय चरणों में राइजोपोडिन का सुव्यवस्थित संश्लेषण दर्शाया। इस संश्लेषण की महत्वपूर्ण विशेषताओं में स्टीरियोसलेक्टिव मुरैयामा एल्डोल प्रतिक्रिया, नैगाओ ऑक्सीलियरी की दोहरी भूमिका (हाइड्रॉक्सी केन्द्रों की अधिष्ठापना करने के लिए काइरल ऑक्सीलियरी के विकल्प के तौर पर और दूसरा एमिनो एल्कोहल के साथ एमाइड बांड का निर्माण करने के लिए एसिलेटिंग कर्मक के रूप में) बाद के स्तर पर ऑक्सेजोल निर्माण एवं स्टिल कपलिंग प्रतिक्रियाएं सिम्मिलत हैं।

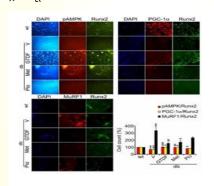
न्यूट्रेल आयोनिक लिक्विड द्वारा सक्रिय Thiol-Ene "क्लिक" प्रतिक्रियाः रेजियोसेलेक्टिव न्यूक्लियो फिलिक हाइड्रोथियोलेशन में [hmim]Br का 'एम्बीफिलिक' लक्षण

Thiol-Ene "क्लिक" प्रक्रिया कार्बन-हीटरोएटम (सी-एस) बॉंड्स का निर्माण करने के लिए प्रबल रणनीति के तौर पर उभरी है। सामान्य तौर पर जिसके परिणाम स्वरूप दो रेजियोआइसोमर्स का निर्माण होता है। सीएसआईआर-सीडीआरआई ने मेटल कॉम्प्लेक्स, बेस अथवा फ्री रेडिकल इंनिशियटर

2014-15

के इस्तेमाल की आवश्यकता के बिना सक्रिय और निष्क्रिय स्टाइरीन व्युत्पन्नों अथवा गौण बेंजाइल एल्कोहल्स और थाइओल्स से रेखीय थाइओइथर्स के संश्लेषण हेतु विलायक एवं उत्प्रेरक के रूप में न्यूट्रल आयोनिक लिक्विड [hmim]Br का पता लगाया है। 1एच एनएमआर स्पेक्ट्रोस्कॉपी और क्वाड्रपोल टाईम-ऑव-फ्लाइट इलेक्ट्रो स्प्रे आयोनाइजेशन मास स्पेक्ट्रोमीट्री (Q-TOF ESI-MS) के इस्तेमाल से विस्तृत क्रियाविधिक जांचों का पता चला कि आयोनिक लिक्विड का "एम्बिफिलिक" लक्षण मार्कोविनकोष पाथवे के द्वारा थाइओल से स्टाइरीन के न्यूक्लियोफिलिक परिवर्धन में वृद्धि करता है। Thiol-yne क्लिक प्रक्रिया हेतु उत्प्रेरक पुनश्चक्रणीयता और क्रिया पद्धित अतिरिक्त लाभ हैं। थाइओफिनोल, स्टाइरीन और फीनाइल एसीटामूलीन के प्रतियोगी अध्ययन से पता चला कि [hmim]Br में थाइओल का Thiol-yne>thiol-ene> द्वितीय के क्रम में क्रिया प्रतिक्रिया दर होती है।

चित्र: 1.7 सी-एस-बांड युक्त जैविक रूप से सक्रिय स्केफोल्ड्स


एमिनोमेथिलपिपेरिडीन के काइरल लैक्टेम कार्बोक्सेमाइड्स की थ्रोम्बोटिक-रोधी गतिविधि

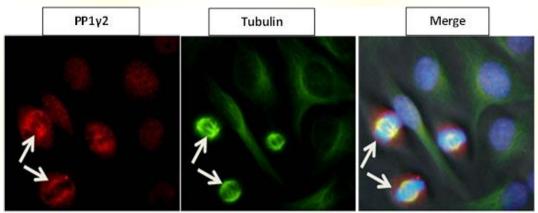
एमिनोमेथिल पिपेरिडीन के काइरल लैक्ट्रेम कार्बोक्सेमाइड्स की श्रृंखला का कॉलेजन प्रेरित अंत:पात्र प्लेटलेट 2-रोधी क्षमता और कॉलेजन सिंहत एपिनेफ्राइन प्रेरित अन्त:पात्र फुफ्फुसी थ्रोम्बोइम्बोलिज्म हेतु संश्लिष्ट किए गए एवं उनकी जांच की गई। सिक्रय यौगिक (30 μ M/Kg) ने महत्वपूर्ण थ्रोम्बोटिक क्षमता का प्रदर्शन किया जो 24 घंटे से अधिक तक बनी रही तथा इसकी उत्कृष्ट उपलब्धता के संकेत देता है। A ($IC_{50}=6.6~\mu$ M) और B ($IC_{50}=3.7~\mu$ M) यौगिकों तथा इनके रेसमिक मिक्सचर C ($IC_{50}=16~\mu$ M) ने उल्लेखनीय ढंग से अंतपात्र रॉलेजन-प्रेरित मानव प्लेटलेट के एकत्रीकरण को दर्शाया। दूसरे यौगिक ने ($IC_{50}=3.3~\mu$ M) और U46619($IC_{50}=2.7~\mu$ M) दोनों कॉलेजन से प्रेरित प्लेटलेट एकत्रीकरण के विरुद्ध दोहरे क्रिया तंत्र को दर्शाया। फार्मा कोकाइनेटिक अध्ययन अति तीव्र आमेलन, दीर्घकालिक एवं अनुक्रिया दर्शाता है। एन-प्रतिस्थापी-2 प्रोलिन एमाइड्स का चूहे के कॉलेजन एवं फेरिक क्लोराइड प्रेरित थ्रोम्बोसिस के इस्तेमाल से थ्रोम्बोटिक-रोधी गतिविधि हेतु मूल्यांकन किया गया जिससे पर्याप्त गतिविधि सिंहत दो प्रोलिन एमाइड्स का अभिनिर्धारण हुआ। प्रोलिन एमाइड्स की थ्रोम्बोटिक रोधी गतिविधि कॉलेजन प्रेरित प्लेटलेट एकत्रीकरण को विशिष्ट अवरोधन के लिए उत्तरदायी ठहराया जाता है।

उत्क्रमी मधुमेह-प्रेरित ऑस्टिओपेनिया हेतु शक्य लक्ष्य के तौर पर एडिपोनेक्टिन रिसेप्टर 1

टाइप 2 मधुमेह हड्डी टूटने के खतरे को बढाने और हड्डी जोड़ने में विलम्ब से संबंधित है; तथापि, मूलभूत तंत्र को अच्छी तरह समझना बाकी है। सीएसआईआर-सीडीआरआई ने सी57/बीएलकेएस बैकग्राउंड (db) में लेप्टिन रिसेप्टर कमी वाले मधुमेह चूहे में कंकाल रोग विज्ञान की व्यवस्थित जांच की है। वाइल्ड टाइ (wt) की तुलना में db चुहों ने कम क्षीण अस्थि द्रव्यमान और आयु-संबंधी ट्रेबीक्यूलर और कॉर्टिकल अस्थि हानि का प्रदर्शन किया।

db में कमजोर कंकाल परिणाम ने हाई ग्लूकोज और अइस्ट्रीकृत वसीय अम्ल (एनईएफए)-प्रेरित ओस्टियोब्लास्ट एपोप्टोसिस द्वारा योगदान किया जो ओस्टियोब्लास्ट में $PPAR\gamma$ कॉ एक्टिवेटर $1-\alpha(PGC-1\alpha)$ डाउन रेग्यूलेशनऔर कंकाल मासपेशी एट्रोजींस के अपरेग्लूलेशन से संबंधित था। एट्रोजीन, मसल रिंग फिंगर प्रोटीन-1 (MvRF1) के ओस्टियो ब्लास्ट क्षीणता ने ग्लूको-और लिपोटॉक्सिसिटी प्रेरित एपोप्टोसिस के विरुद्ध सुरक्षा की । 6-C-B-d-ग्लू को पाइरेनोसिल-(2s, 3s)-(+)-5, 7, 3, 4'-टेट्राहाइड्रॉक्सीडिहाइड्रोफ्लेवोनोल (जीटीडीएफ) द्वारा अपरेग्यूलेशन ऑस्टियोब्लास्ट-विशिष्ट

चित्र:1.8a


2014-15

PGC-1a, एडिपोनेक्टिन रिसेप्ट 1 (AdipoR1) एगोनिस्ट तथा db चूहों में मेटफॉर्मिन जो मांसपेशियों में एडिपो आर1 निष्पीडन की कमी की परन्तु हड्डी में नहीं, मधुमेह में सुधार किए बिना ओस्टियोपेनिया से wt स्तरों को पुन: स्थापित किया। जीटीडीएफ और मेट फोर्मिन दोनों ने ग्लूको-एवं लिपोटॉक्सिसिटी-प्रेरित ओस्टियो ब्लास्ट एपोप्टोसिस की सुरक्षा की तथा $PGC=1\alpha$ के अवक्षय ने इस संरक्षण को समाप्त किया। जबिक AdipoR1 ने न कि AdipoR2 —अवक्षय ने जीटीडीएम द्वारा संरक्षण को समाप्त किया, एडिपो-अवक्षय द्वारा मेटफॉर्मिन क्रिया में बाधा नहीं पहुंचाई। हमने निष्कर्ष निकाला है कि ओस्टियोब्लास्ट्स में $PGC=1\alpha$ अपरेग्यूलेशन कंकाल आरोग्यता में टाईप-2 मधुमेह-संबद्ध विकृति को पूर्णतया बदल सकता है।

कैंसर-टेस्टिस एंटीजन (सीटीए) बायोमार्कर $ext{PP1}\gamma2$

नवीन कैंसर टेस्टिस एंटीजन (सीटीए) बायोमार्कर, सेरीन थ्रीयोनाइन प्रोटीन फोस्फेटेज-1 गामा 2 ($PP1\gamma2$), टेस्टिस विशिष्ट आइसोफोर्म, स्पेटोंजेनेसिस के दौरान महत्वपूर्ण भूमिका निभाने संबंधी जानकारी दी जाती रही थी, को अभिनिर्धारित एवं अभिलक्षणित किया गया है। विभिन्न कैंसर सेल लाइंस में $PP1\gamma2$ के निष्पीडन तथा कैंसर रोगियों के बायोप्सी नमूनों को आरटी-पीसीआर, वेस्टर्न ब्लॉटिंग एवं इम्यूनोलोकेलाइजेशन सहित विभिन्न तकनीकों द्वारा प्रदर्शित किया गया है, जिससे कैंसर की कोशिकाओं में ट्रांस्क्रिप्ट तथा प्रोटीन स्तर दोनों पर $PP1\gamma2$ आइसोफोर्म की उपस्थित की पुष्टि की। $PP1\gamma2$ प्रतिपिंडों सहित HeLa कोशिकाओं (सरवाइकल कैंसर सेल लाइन) के इम्यूनो-फ्लूओरीसेंस से मोनो न्यूक्लियर कोशिकाओं के केन्द्र में प्रोटीन के स्पेसियो-टेम्पोरल लॉकेलाइजेशन का पता चला जो कोशिकाओं के विभाजन के समसूत्रीकरण में प्रवेश करने पर स्पाइंडल पॉल्स को फिर से विभाजन किया।

इसके अतिरिक्त PP1 γ 2 निष्पीडन के चिकित्सीय महत्व का मूल्यांकन किया गया तथा कैंसर के रोगियों में तरल प्रतिरक्षा अनुक्रिया का मूल्यांकन किया। यह देखा गया कि ग्रीवा कैंसर के प्रारंभिक स्तर में रोगियों की बहुत अधिक संख्या ने PP1 γ 2 निष्पीडन दर्शाया तथा प्रतिपिंडों का सृजन किया, प्रारंभ में पता लगाने के लिए बायोमार्कर के रूप में एंटीजेन के संभावित वियोजन और ग्रीवा कैंसर के रोग निदान तथा कैंसर के उपचार हेतु अनाक्रामक चिकित्सीय तकनीकों का विकास दर्शाता है।

चित्र:18b कोशिका विभाजन के दौरान टेम्पोरल लोकेलाइजेशन एवं पुन: विभाजन दर्शाने वाली HeLa कोशिकाओं में PP1 γ 2 (लाल) एवं ट्यूबूलिन (हरी) के इम्यूनोलोकेलाइजेशन चावल की विभिन्न किस्मों से भूसी के जैव-सक्रिय गुण

सीएसआईआर-सीएफटीआरआई ने चावल की विभिन्न किस्मों की भूसी में जैव सक्रिय घटकों, पॉलीफिनोल अंश एवं प्रतिऑक्सीकारक गतिविधि की जांच की है। नॉन-पिगमेंटिड (आईआर-64) और पिगमेंटिड (ज्योति एवं नजावरा) किस्मों के पेषण द्वारा भूसी प्राप्त हुई और इसकी निष्कर्षणों के इस्तेमाल से जैव गतिविधि आमापों में पॉली फिनॉलिक अवयव, कुल फ्लेवोनाइड अवयव हेतु जांच की गई। पिगमेंटिड ने नॉन-पिगमेंटिड किस्म की तुलना में 8-9 गुणा अधिक विलेयता और बंधन पॉलीफिनोल्स को दर्शाया। नॉन-गिमेंटिड की तुलना में पिगमेंटिड चावल की भूसी में फ्लेवेजोइड अवयव 3 गुणा अधिक था। पिगमेंटिड किस्म नजावरा ने ज्योति और आईआर-64 के बाद अपमार्जन DPPH धात्वंश की अत्यधिक शक्यता दर्शाई। ज्योति ने नजावरा और

2014-15

आईआर-64 के बाद एफआरएपी <mark>विधि द्वारा ऊर्जा</mark> को अत्यधिक कम करने वाला दर्शाया । <mark>पिगमेंटिड किस्मों</mark> ने उच्च पॉलीफीनॉल अवयव एवं कुल प्रति ऑक्सीकारक गतिविधि भी दर्शाई ।

सूक्ष्मपोषकों की जैव उपलब्ध में सुधार लाने के लिए खाद्य आधारित रणनीतियां

सीएसआईआर-सीएफटीआरआई ने खाद्य अनाजों से लौह और जिंक की जैव सुलभता पर संभावित लाभकारी प्रभाव हेतु ईडीटीए (ऐथिलीन डाइएमाइन टेट्रा एसेटिक एसिड) सुविख्यात खाद्य ग्रेड धातु चीलेटर की खोज की है। सामान्य तौर पर खाए जाने वाले खाद्य अनाजों और दालों-चावल, गेहूँ, रागी, ज्वार, लाल चने की दाल और काले चने की दाल अध्ययन के लिए उपयोग किए गए थे। खाद्य अनाजों के प्राकृतिक लौह और जिंक अवयव के आधार पर ईडीटीए को प्राकृतिक लौह एवं जिंक अवयव में बढ़ते हुए मोलर औसत (1:0.25 से 1:2) पर अनाजों में शामिल किया गया था। ईडीटीए ने जांच किए गए सभी अनाजों एवं दालों में अत्यधिक सीमा तक लौह एवं जिंक दोनों की जैव सुलभता में वृद्धि की। खनिज जैव सुलभता के इस संवर्धित प्रभाव को तब तक बनाए रखा गया जब तक खाद्य अनाजों का प्रैशर कुकिंग द्वारा ऊष्मा से उपचार किया गया था।

पादपों से आमेगा-3 समृद्ध पत्तों का अन्वेषण

सीएसआईआर-सीएफटीआरआई ने एएलए के समृद्ध स्रोत के रूप में पोर्तुलैका पत्तों का अभिनिर्धारण किया है और हरी पत्तेदार सब्जियों से क्लोरोफिल से समृद्ध ओमेगा-3 वसीय अम्लों का विकास करने का प्रस्ताव है। पोर्तुलैका पत्तियों का ट्रांस्क्रिप्टोम भी पूरा कर लिया गया है। ट्रांस्क्रिप्टोम डाटा से यह पाया गया था कि असमृद्ध पत्तियों में कल्पित असंतृप्त अत्यधिक व्यक्त किया गया है। यह खमीर में क्लोन किया गया और निष्पीडित किया गया है; असंतृप्त के कार्य की अंत:पात्रे आमापों में भी पृष्टि की गई है।

खमीर लिपिडोम

सीएसआईआर-सीएफटीआरआई ने कुछ खमीर ट्रांसिक्रप्शन कारकों का अभिनिर्धारण किया है जो लिपिड में मेटाबोलिज्म में संमावित महत्वपूर्ण नियामक भूमिकाएं निभा सकते हैं। ट्रांसिक्रप्शन कारक FKHI निश्चित रूप से लिपिड फॉस्फेटेज जीन LPP1 का निर्धारण करता है जिससे विकिरण क्षित अनुक्रिया और इस प्रकार डीएनए की मरम्मत में सम्मिलित जीनों के परिवार की आरएडी नामक जीनों के म्यूटंटों को समाप्त करने में टीएजी संवयन होता है। यह दिलचस्प बात है कि क्षित मरम्मत में कमी के कारण आरएडी म्यूटंट्स अल्पकालीन क्रमिक जीवन अविध एवं समय पूर्व आयु वृद्धि के लक्षण दर्शात हैं। आयु वृद्धि के इन संकेत घटनाओं को लिपिड्स की उच्च स्तरों से सहसम्बद्ध किया गया था जो यह संकेत देता है कि लिपिड संचयन आयुवृद्धि में बायोमार्कर्स के रूप में शायद कार्य कर सकता है। अन्य अध्ययन में ट्रांसिक्रप्शन घटक PHO4 और PHM8 पर इसका निर्धारण सिम्मिलत है, लाइसो फोस्टिडिक एसिड (एलपीए) फोस्फेटेज, जो एलपीए को मोनो एसिलग्लाइसरील (एमएजी) में परिवर्तित करने में सिम्मिलत होता है, बाद में ट्राइग्लाइसराइड के स्तरों में वृद्धि देखी गई। जबकि केनेडी पाथवे के अनुसार फोस्फेटाइडिक एसिडकेडिफोस्फोरीलेशन से आने वाले प्रीकर्सर डीएजी अणु से टीएजी का निर्माण होता है, पहली बार यह प्रस्ताव किया गया था कि खमीर में एमएजी मीडिएटिड टीएजी जैव संश्विष्ट मशीनरी हो सकती है, जिनमें पीएचएम8 के अतिनिष्पीडन से एमएजीफलक्स को डीएजी में परिवर्तित किया जाता है और तत्पश्चात डीजीए1 जीन द्वारा टीएजी का रूपांतरण किया जाता है अतः जो अब तक सिर्फ डीएजी एसिल ट्रांस्केरेज जाना जाता रहा है। तीसरे अध्ययन में खमीर ट्रांसिक्रप्शन घटक आईएमई4 सिम्मिलत है जो अभी तक लक्षणित किए जाने वाले जीन पर इस घटक का निश्चित नियंत्रण YORO22C देखा गया था। इस अध्ययन में इसे सबस्ट्रेट के तौर पर कार्डियोलिपिन हेतु विशेष प्राथमिकता सिहत माइटोकोंड्रियल फोस्फोलिपेज के रूप में इसे लक्षणित करना संभव था। यह भी प्रस्ताव किया गया था कि माइटोकोंड्रियल पोस्पोर ने विखंडित माइटोकोंड्रिया शिपि के कमी के कारण और YORO22C जीन के अपरेगूलेशन के कारण थी। कार्डियोलिपिन के अपूर्ण तननों ने विखंडित माइटोकोंड्रिया।

पित्त अम्ल ट्रांस्पोर्टर्स (एएसबीटी) को व्यवस्थित करने के लिए खाद्य अणु

पित्त अम्लों के असमान आंत्रिक पुर्नामेलन कॉलेस्टेरोल के अंतर्जात पूल के इस्तेमाल से पित्त अम्लों के संश्लेषण को बढ़ाता है और इस प्रकार ब्लड कॉलेस्टेरॉल एवं अन्य लिपिड स्तरों को कम करता है। पित्त अम्लों के पुन: चक्रण को आइलियल एपिकल सोडियम-आश्रित पित्त अम्ल ट्रांस्पोटर (एएसबीटी) के मॉड्यूलेटिंग द्वारा आइलियल स्तर पर रोका जा सकता है। पित्त अम्ल एंटरोसाइट और हीपेटोसाइट में प्रत्येक जंक्शन में सिम्मिलित कॉम्प्लेक्स ट्रांस्पोर्टर सिस्टम के द्वारा एंटरोहीपेटिक पुन:चक्रण को सफलतापूर्वक पूरा करते हैं। एएसबीटी सम्पूर्ण एंटरोसाइट मेम्ब्रेन में सिक्रय रूप से पित्त

2014-15

अम्लों को पम्प करता है, जहां से अन्य ट्रांस्पोर्टर्स पित्त अम्लों को हीटोसाइट में ले जाते हैं। सीएसआईआर-सीएफटीआरआई ने संभाव्य एएसबीटी मॉड्यूलेटर्स के रूप में कार्य करने वाले फाइटो अणुओं की जांच करने के लिए मॉलिक्यूलर डॉकिंग की है। स्विस डॉक का उपयोग प्रारंभिक आंकड़ा हेतु मूलभूत साधन के रूप में किया गया था। डॉकिंग अध्ययनों के परिणाम अर्थात बंध ऊर्जा, स्थितियों, स्कॉर्स की व्याख्या की गई तािक तुलनात्मक मूल्यांकन तैयार किया जा सके। ट्राइगोनेलिन (ट्राइगोनेल्ला फोइनम-ग्रेकम) का जांच अणु के रूप में चयन किया गया था। विथेनोलाइड तैयार इष्टतम बंधन 9.17 kcal/mol. के एएसबीटी से अंत:क्रिया करता है। इनसिलिको अध्ययनों से प्राप्त परिणामों के आधार पर जांच अणु की पित्त अम्ल ट्रांस्पोर्टर मॉड्यूलेशन क्षमता के बहिर्वलित आहार नली सैक प्रयोग द्वारा स्विस एल्बिनों चूहों के डाइस लिपिडेमिक मॉडल में अंतपात्र अध्ययन किए गए। डाइसिलिपिडेमिया 35% वनस्पित की उच्च वसा खुराक (एचएफ) खिलाकर उत्प्रेरित किया गया तथा 7% वसा स्तर पर नियंत्रण किया। पित्त अम्ल मेटाबोलिजा के निर्धारण पर जांच अणु के ग्रहण किए आहार-संबंध प्रभाव को समझने के लिए पित्त अम्ल जैव संश्लिष्ट पाथवे और ट्रांस्पोर्टर्स के एंजाइमों को सीमित करने वाली निष्पीडन दर का वेस्टर्न ब्लॉट द्वारा अध्ययन किया गया है। कॉलेस्टेरोल को प्रारंभिक पित्त अम्ल के बहुचरणीय रूपांतरण में सम्बद्ध एंजाइम को सीमित करने वाली दर कॉलेस्टेरोल 7 अल्फ हाइडॉक्सीलेज (CYP7A1) को प्रमाणित किया गया।

घुटने और जोड़ों के दर्द के लिए उत्पादन चिकित्सीय अध्ययन एवं लाइसेंसिंग हेतु तैयार

सीएसआईआर-सीआईएमएपी ने घुटने के दर्द, जोड़ों के दर्द एवं शोथ के प्रभावी प्रबंधन हेतु रूमर्थ कैसूल विकसित किए हैं। रूमटॉइड आर्थाइटिस (आम वात रोग) से संबंधित रोगों के लिए शोथ रोधी और पीड़ाहारी स्थितियों हेतु रूथमर्थ कैप्सूल्स मानकीकृत किए गए एवं वैज्ञानिक तौर पर प्रामाणिक किए गए। चिकित्सीय अध्ययन उचित भागीदार के सहयोग से करने का प्रस्ताव है।

सेस्बेनिया एक्यूलिएटर की पत्तियों से शोध रोधी गतिविधि सहित नवीन रसायन घटक

सामान्यतौर पर धैंचा कहलाने वाला सेस्बेनिया एक्यूलिएटर (फैबेसिऐ परिवार) फली परिवार से संबंधित है और यह उपयुक्त हरित फसल है क्योंकि यह शीघ्र उगती है निम्न आर्द्रता आवश्यकताओं के साथ आसानी से गल जाती है तथा अधिकतम कार्बनिक सामग्री उत्पन्न करती है। सेस्बेनिया एक्यूलिएटर की पित्तयों के निष्कर्षण से सीएसआईआर-सीआईएमएपी द्वारा नवीन रसायन यौगिक अलग किए गए थे तथा नौ ज्ञात यौगिकों सहित यौगिक 1, (सेरामाइड टाइप); यौगिक 2, सीरेब्रोसाइड टाइप और ट्राइटेरपीन एसिड 3-0-0-L- रैग्नो पाइरेनोसाइड के रूप में यौगिक 3 के तौर पर पूर्ण रूप से अभिलक्षणित किए गए थे। हेक्सेन की पत्ती के निष्कर्षण (एचएल), एथिल एसिटेट की पत्ती के निष्कर्षण (ईएएल) और यौगिकों 1, 2 एवं 3 ने पूर्व-शोथ साइटोकिन TNF-a का महत्वपूर्ण संदमन दर्शाया। एमटीटी आमाप के इस्तेमाल से अन्त पात्र सेल साइटोटॉक्सीसिटी अध्ययन से पता चला कि ये यौगिक सामान्य कोशिकाओं के लिए अविषाक्त थे। जैव-उर्वरक शक्यता होने के अतिरिक्त सेस्बिनया एक्यूलिएटा रसायनिवज्ञों एवं जीव विज्ञानियों को भेषजगुण विज्ञानीय महत्व वाले नए रसायन तत्वों का पता लगाने के लिए नए अवसर भी प्रदान करेगा।

स्वच्छता हेत् जैव निम्नीकरणीय प्रौद्योगिकी

सीएसआईआर-सीआईएमएपी ने पादप से उत्पन्न जैव-सिक्रयकों के इस्तेमाल से जैव निम्नीकरणीय, त्वचा अनुकूल, मेडिकेटिड एवं खुश्बूदार स्वच्छता नैपिकन का विकास किया है जो जीवाणु एवं कवक संक्रमणों को रोकते हैं। यह सस्ता उत्पाद विशेष रूप से निम्न आय समूह की ऐसी महिलाओं के लिए है जो अभी तक गंदे सस्ते विकल्पों को इस्तेमाल करती रही हैं। इसका भारत में पेटेंट फाइल किया गया है। मनोहर सुगंध वाले इसे नवोन्मेषी उत्पाद में इस्तेमाल करने से पादप निष्कर्षण तंदुरूस्ती और आराम देता है एवं त्वचा संबंधी अन्य संक्रमणों को समाप्त करता है।

नींबू की सुवास वाली तुलसी (ओसिममअफ्रीकेनम लोडर) की सिट्रल से समृद्ध सगंधीय तेल देने वाली किस्म

नींबू की सुवास वाली तुलसी (ओसिमम अफ्रीकेनम) लैमिआसीए परिवार से संबंधित है। ओसिमम का सगंधीय तेल पत्तियों अथवा संपूर्ण हर्ब के हाइड्रो-अथवा वाष्प आसवन द्वारा सत्त निकाला जाता है तथा स्वाद वाले खाद्यों, डेंटल एवं ओरल प्रीपरेशंस, सुवासों और परंपरागत औषधियों में उपयोग किया जाता है। अधिक सिट्टल अवयव (68-75) सहित हर्ब की अधिक

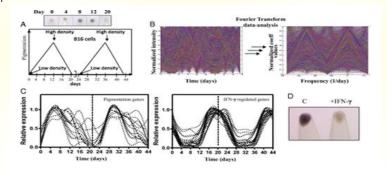
चित्र: 1.9 ओसिमम अफ्रीकेनम की किस्म सिम-ज्योति

2014-15

पैदावार एवं सगंधीय तेल हेतु सघन संकर प्रयासों के द्वारा सीएसआईआर-सीआईएमएपी द्वारा ओ. अफ्रीकेनम की 'सिम ज्योति' नामक कृषि जोपजाति का विकास किया गया है। सिम ज्योति की औसत हर्ब पैदावार 200 क्विंटल/हेक्टेयर और तेल की पैदावार 150 कि ग्रा/हेक्टेयर है। सिट्रल अवयव से समृद्ध सगंधीय तेल की अत्यधिक मांग है। नींबू घास की फसल सिट्रल के निष्कर्षण हेतु सगंधीय तेल का एकमात्र स्रोत है। नींबू घास 4-5 वर्ष की फसल होने के कारण किसान अपने खेत में लम्बे समय के लिए नींबू घास की फसल उगाने में संकोच करता है। 'सिम ज्योति' 70-80 दिन की अल्पावधि में सिट्रल का उत्पादन करेगा। यह गेहूँ और धान और लघु किसानों की अन्य सब्जी फसलों के बीच फसल चक्र/इंटर क्रॉपिंग में उपयुक्त है। इस किस्म की पत्तियों का उपयोग लैमन टी में किया जा सकता है।

भावी औद्योगिक उपयोग के लिए जैव सक्रिय एरोमा रसायनों/सगंधीय तेलों के नए स्रोतों की खोज

सीएसआईआर-सीआईएमएपी ने गैस क्रोमेटोग्राफी (जीसी-एफआईडी) और गैस क्रोमेटोग्राफी मास स्पेक्ट्रोमीट्री (जीसी. एमएस) के इस्तेमाल से भारत से मीलेल्यू का लाइनेरीफोलिया Sm के सगंधीय तेल संयोजन का विश्लेषण किया है। चवालीस घटकों को अभिनिर्धारित किया गया, जो 1, 8-सिनीओल (77.40%) और α -टरिपिनओल (7.72%) द्वारा प्रस्तुत किए गए ऑक्सीजीनेटिड मानोटर पिओइड्स (86.63%) के अधिकतर अवयव द्वारा अभिलक्षणित कुल संयोजन की 98.90% के लिए उत्तरदायी हैं। सगंधीय तेल ने एशिरिकिया कोली, सेल्मोनीला टाइिफम्युरियम, बेसिलस सबिटिलस के बेहतर प्रति बैक्टीरिया-रोधी गतिविधि और स्टेफाई लोकोकस एपिडरिमिडिस, स्टेफाइलोकोकस औरियस (एमटीसीसी 2940), स्टेफाइलोकोकस औरियस(एमटीसीसी 96) और स्ट्रोप्टोकोकस म्यूटेंस के प्रति सामान्य गतिविधि दर्शाई। उच्च 1, 8-सिनीओल (>75%) अवयव हेतु पहली बार भारत में उगाए जाने वाले एम लिनेरिफोलिया हेतु सगंधीय तेल के संयोजन को अभिलक्षणित किया गया। इस प्रकार इसे कॉस्मेटिक्स एवं हर्बल सूत्रणों के लिए 1, 8-सिनीओल के संभावित स्रोत के रूप में प्रजनित किया जा सका एवं इसकी फसल काटी गई।


पराबैंग्नी (यूवी) विकिरण से मानव त्वचा की सुरक्षा के बहु आयामी मार्ग

त्वचा का बार-बार धूप के पारस्पिरक प्रभाव में आना मानव जीवन का वास्तविक सार है और यह लाभकारी एवं हानिकर दोनों प्रभावों को दर्शाता है। त्वचा का प्रत्यक्ष सुदृढ़ आर्किटेक्चरल रूपरेखा उस महत्वपूर्ण प्रक्रिया को गुप्त रखती है जो सतह एवं पर्यावरण के बीच अंतरापृष्ठ पर कार्य करती है। सीएसआईआर-आईजीआईबी ने तीन विशिष्ट सुरक्षात्मक प्रक्रिया एवं उत्तरदायी मार्गों पर विचार-विमर्श किया है जो पराबेंगनी (यूवी) विकिरण के घातक प्रभावों से त्वचा की सुरक्षा करते हैं। प्रतिऑक्सीकारक-उत्तरदायी मार्गों सहित मानव त्वचा के अद्वितीय स्तरीकृत उपकला आर्किटेक्चर यूवी विकिरण के

लिए महत्वपूर्ण सुरक्षा प्रक्रियाविधि का निर्माण करता है। जिटल रंजक प्रणाली और इम्यून-सिस्टम साइटोकाइन एक्सिस सिहत इसके इंटरसेक्शन कोमलापूर्वक ऊतक समस्थापन का संतुलन बनाए रखते हैं। इसने असामान्य अरजक रोग, विटिलिगो के संदर्भ में इन नेटवर्कों के बीच संबंधों पर भी विचार-विमर्श किया है। जिटल ट्यूनेबल प्रक्रिया, सहज बहुपरतीय आर्किटेक्चर एवं त्वचा एवं धूप की अंत:क्रिया में सिम्मलित विकासपरक चयन दबाव जैविक जिटलता को समझने के लिए इसे अकाट्य मॉडल बनाता है।

IFN-a सिग्निलंग मेलानोसोम मैच्यूरेशन के निर्धारण के द्वारा त्वचा पिग्मेंटेशन होमीओस्टेसिस को बनाए रखता है

कोशिकीय होमीओस्टेसिस अरैखिकीय फीडबैक्स सहित जटिल अंतिक्रिया प्रक्रियों का परिणाम है जो

चित्र:1.10 पिग्मेंटेशन ऑसिलेटर के विश्लेषण से अवर्णिकत कोशिकाओं में प्रमुख $IFN-\gamma$ का पता लगता है (ए) विभिन्न सघनताओं पर संवर्धित कोशिकाओं के पिग्मेंटेशन एवं डिपिग्मेंटेशन के दो चक्रों को दर्शाने वाला अंत:पात्र जैविक ऑसिलेटर का व्यवस्थित प्रस्तुतीकरण (तीर प्लेटिंग का समय दर्शाते हैं)। चक्र 1 हेतु अलग-अलग दिनों पर बी 16 कोशिकाओं के (ऊपरी) कोशिका पेलेट्स 1 (बी, बाएं) ऑसिलेटर मॉडल में सभी जीनों के संबंधित निष्पीडन में समय-पर निर्भर परिवर्तन। (बी, दाएं) उनकी संबंधित आवर्तियों के कार्य के रूप में सभी जीनों के एफटी विश्लेषण द्वारा प्राप्त सामान्यीकृत गुणांक मान (सी, बाएं) पिग्मेंटेशन एवं डिपिग्मेंटेशन के दो चक्रों के माध्यम से ज्ञात पिग्मेंटेशन जीनों के संबंधित निष्पीडन स्तर। (सी, दाएं) दोनों चक्रों में एफटी विश्लेषण द्वारा अभिनिधांरित ज्ञात $IFN-\gamma$ नियंत्रित जीनों के संबंधित निष्पीडन स्तर। (घ) नियंत्रण (सी) के सेल पैलेटस और 12वें दिन $IFB-\gamma$ उपचारित बी 16 कोशिकाएं

2014-15

विशिष्ट स्थानिक एवं अस्थायी आयामों को पूर्ण विस्तार दे सकता है। त्वचा शोधन तक ऐसी गतिकी अनुक्रिया है जो एपिडर्मल कोशिकाओं की जीनोम अखंडता को बनाए रखती है। हालांकि मौलिक हाइपरिप्मेंटेशन कैसेकडमागों की पहचान की गई है, नकारात्मक फीडबैक रेगूलेटरी लूप्स जो सिक्रिय मीलेनोजेनेसिस प्रक्रिया को कम कर सकते हैं उन्हें पूर्ण रूप से समझा नहीं गया है। सीएसआईआर-आईजीआईबी त्वचा पिग्मेंटेशन जीव विज्ञान में $IFN-\gamma$ की नियामक भूमिका को चित्रित करता है और दर्शाया कि $IFN-\gamma$ सिग्नलंग अनेक पिग्मेंटेशन जीनों के अनुकूल नियमन द्वारा मुख्य कोशिकांग मेलानोसोम को परिपक्व होने में बाधा डालता है। $IFN-\gamma$ सिग्नल की स्वतः वापसी सामान्य कोशिकीय प्रोग्रामिंग को पुनःस्थापित करती है। मेलानोसाइट्स में यह प्रभाव $IFN-\gamma$ नियामक घटक-1 द्वारा मध्यस्थता करता है और यह केन्द्रीय नियामक सूक्ष्म-फ्थेलिमया से सम्बद्ध ट्रांसिकप्शन घटक पर निर्भर नहीं है। क्रोमिक $IFN-\gamma$ सिग्नलिंग चूहे और मानव दोनों की त्वचा में स्पष्ट हाइपो पिग्मेंटेशन फीनोटाइप दर्शाती है। यह दिलचस्प बात है कि $IFN-\gamma$ KO चूहों ने यूवी-उत्प्रेरित शोधन के बाद एपिडरमल पिग्मेंटेशन की बुनियादी स्थित को पुनः स्थापित करने के लिए लंबितरोग निवृत्ति अनुक्रिया दर्शाते हैं। साथ ही, हमारे अध्ययन त्वचा पिग्मेंटेशन होमीओस्टेसिस में $IFN-\gamma$ सिग्नलिंग नेटवर्क की नई स्पेशिओटेम्पोरल भूमिका निरूपित करते हैं, जिसका विभिन्न त्वचीय अवर्णिकत एवं दुर्सम रोगों से सम्बन्ध हो सकता है।

मॉडल मेथिलोट्रॉफ मेथि<mark>लोबैक्टीरियम एक्सटोरक्वेंस AM1 में दुर्लभ प्रोटीन-कोडिंग जीनों की खोज</mark>

प्रोटीन-कोडिंग जीनों की व्याख्या को स्पष्ट करने और जीनोम में जीनों की खोज करने के लिए एमएस का इस्तेमाल प्रोटिओजीनोमिकी में शामिल है। सीएसआईआर-आईजीआईबी ने मेथिलो-ट्राफ्स; मीथेनोल जैसे कम किए हुए कार्बन यौगिकों में उत्तर जीविता बनाए रखने में सक्षम जीवों की व्याख्या में सुधार करने के उद्देश्य से सार्वजनिक रूप से उपलब्ध प्रोटिओमिक्स डाटा से मेथिलोबैक्टीरियम एक्सटोक्वींस AM1(ME-AM1) का विस्तृत प्रोटिओजीनोमिक विश्लेषण किया है। 2482 (50%) प्रोटीनों का अभिनिर्धारण करने के अतिरिक्त 29 नए जीनों की खोज की गई और 66 जीन मॉडलों को ME-AM1 जीनोम में संशोधित किए गए। 75 पेप्टाइड्स सिहत ऐसे एक नए जीन की पहचान की गई है, अन्य मेथिलोबैक्टीरिया में हॉमोलॉग की कमी होती है परन्तु ग्लाइकोसिल ट्रांस्फेरेज एवं लिपोपॉली सैक्केराइड जैव संश्लेषण प्रोटीन डोमैन होता है जो बाहरी झिल्ली संश्लेषण में इसकी संभावित भूमिका ईगित करता है। मेथिला बैक्टीरिया सिहत ME-AM1 में ही कई नए जींस उपस्थित रहते हैं। असम्बद्ध टैक्सोनोमिक श्रेणियों और कुछ जीनों के निम्न जीसी-अवयव में इन जीनों के दूरस्थ हॉमोलॉग्स से इनकी उत्पत्ति की संभाव्य विधि के तौर पर लेटरल जीन हस्तांतरण का पता चलता है। मेथिलोट्रॉफी जीन आइलैंड में लघु जीन की खोज और मेथिलोट्रॉफी हेतु अनिवार्य पाइरो किवनोलाइनिक्वनोन संश्लेषण हेतु महत्वपूर्ण जीन को पुन: परिभाषित करके मेथिलोट्रोफी से सम्बद्ध जीनों की व्याख्या को उन्नत बनाया गया है। प्रोटिओ जीनोमिकी और बायो इंफॉमेंटिक्स के कड़े विश्लेषण के संयुक्त उपयोग से मॉडल मेथिलोट्रोफ ME-AM1 जीनोम में प्रोटीन-कोडिंग जीनों की व्याख्या में अत्यधिक सुधार किया गया।

रोग की निम्न तीव्रता वाले दक्षिण भारतीय स्किजोफ्रेनिया के रोगियों में कम मानसिक रूग्णता-रोधी अनुक्रिया सहित PI4KA एवं GRMS3 आनुवंशिक बहुरूपता का योगवाही सहयोग

लिटरेचर स्किजोफ्रेनिया के रोगियों में मानसिक रूग्णता-रोधी अनुक्रिया में ग्लूटेमेटर्जिक पाथवे जीनों की मुख्य भूमिका दर्शाता है। तथापि, मानसिक रूग्णता-राधी अनुक्रिया में इनकी मुख्य भूमिका का आणविक आधार अस्पष्ट बना हुआ था। अतः इनकेआणविक आधारों को स्पष्ट करने के लिए सीएसआईआर-आईजीआईबी ने दक्षिण भारतीय स्किजोफ्रेनिया रोगियों में औषध अनुक्रिया सहित GRM3, SLC1A1, SLC1A2, SLC1M3, SLC1A4 जीन बहुरूपताओं में अंतक्रियाओं की जांच की है। रोग की कम एवं अधिक तीव्रता वाले समूहों में 423 स्तरीकृत स्किजोफ्रेनिया रोगियों में इन जीनों से 48 SNPs का जीनोटाइप किया गया। SNPs और सम्बद्ध SNPs के हैप्लोटाइपिक संयोजनों की मानसिक रूग्णता-रोधी अनुक्रिया से इनके सहयोग हेतु जांच की गई। पूर्व अध्ययन किए गए जीनों (BDNF, RGS4, SLC6A3, PI4KA एवं PIP4K2A) से इन SNPs और 535 NPs के बीच जीन-जीन की अंतःक्रिया का पता लगाने के लिए बहुघटक परिणामिक क्रम का आगे और उपयोग किया गया। एकल SNP और हेप्लोटाइप विश्लेषण से रोग की तीव्रता पर ध्यान दिए बिना औषध अनुक्रिया से किसी महत्वपूर्ण सहयोग का पता नहीं चला। जीन-जीन अंतःक्रिया विश्लेषण से PI4KA-rs165854 FRM3-rs1468412 बहुरूपताओं तथा रोग की निम्न तीव्रता वाले स्किजोफ्रेनिया के रोगियों में अपूर्ण मानसिक रूणता-रोधी अनुक्रिया (OR=11.21; 95% CI=3.69-41.69) के बीच देखे गए सहक्रियात्मक

2014-15

प्रभाव सहित अग्रणी नमूने प्राप्त हुए । इसके अतिरिक्त, अरुपी मोनोथेरेपी (n=355) और रिस्परीडोन (n=260) उपचार उपसमूहों (क्रमशः OR=11.21; 95% CI=3.30-38.12 OR=13.5; 95% CI=3.03-121.61) में भी यह अंतःक्रिया देखी गई थी। PI4KA को फॉस्फेटाइडाइलियोसिटोल-4, 5-बाइस्फॉस्फेट के जैव संश्लेषण में सम्मिलत माना जाता है जो प्लाज्मा मेम्ब्रेन सहित साइनेप्टिक वीसीक्लेज (ग्लूटेमेंट, डॉपामाइन) के एक्सोसाइटोटिक पयूजन का निर्धारण करता है एवम GPCRs के सिंग्नल ट्रांस्डक्शन की अवधि निर्धारित करता है। जबिक GRM3 ग्लूटामैट एवं डोपोमाइन ट्रांस्मीशन का निर्धारण करता है। वर्तमान खोजें दर्शाती हैं कि PI4KA और GRM3 बहुरूपताओं में मानसिक रूग्णता रोधी अनुक्रिया को संयुक्त रूप से मॉड्यूलेट करने की संभावना है। ये परिणाम इन अंतःक्रियाओं पर आगे और प्रकाश डालने के लिए अतिरिक्त प्रतिकृति अध्ययनों का समर्थन करते हैं।

डीएचएच फॉस्फोडाईइस्टेरेज में वैकल्पिक सबस्ट्रेट की पहचान हेतु माइकोबैक्टीरियल नैनो RNase नमूनों में अद्वितीय सबयूनिट पैकिंग

डीएचएच सुपर फेमिली में RecJ, nanoRNases (NrnA), साइक्लिक न्यूक्लियोटाइड फॉस्फोडाइइस्टेरेजज एवं पाइरोफॉस्फेटेजेज सिम्मिलित हैं। सीएसआईआर-आईजीआईबी ने माइकोबैक्टीरियम स्मेग्मेटिस, MSMEG_2630 से द्विकार्यात्मक Nrn-A होमोलॉग पर अंत:पात्र एवं अंतर्जीव जांच की है। MSMEG_2630 की क्रिस्टल संरचना 2.2- वियोजन का निर्धारण करता है तथा एन-टिमेंनल डीएचएच क्षेत्र और सी-टिमेंनल डीएचएचए1 क्षेत्र में प्रत्येक सबयूनिट फोल्डिंग सिहत दो समान सबयूनिट्स वाले डाइमर का पता चलता है। समग्र संरचना एवं प्रत्येक क्षेत्र का फोल्ड डीएचएच सुपर फेमिली के अन्य सदस्यों के समान है। तथापि, MSMEG_2630 अन्य डीएचएच फॉस्फोडाइइस्टरेजेज के विपरीत विशिष्ट क्वाटर नैरी संरचना दर्शाता है। सबयूनिट पैकिंग की नई विधि एवं इस क्षेत्र के इंटरफेस का संवर्धन करने वाले लिंकर क्षेत्र के परिवर्तन द्विकार्यात्मक nanoRNases में सबस्ट्रेट्स की वैकल्पिक मान्यताओं हेतु जिम्मेवार हैं। MSMEG_2630 द्विकार्यात्मक 3'-5' एक्सोन्यूक्लिएज [डीऑक्सीरिबोप्यूक्लिक एसिड (डीएनए) एवं राइबोन्यूक्लिक एसिड(आरएनए) सबस्ट्रेट्स दोनों पर] तथा CysQ-जैसेफॉस्फेटेज गतिविधि दर्शाता है। एम.स्मेग्मेटिस में MSMEG_2630 के ट्रांस्पोसोन बाधाके कारण विभिन्न डीएनए-को क्षति पहुंचने वाले कर्मकों की उपस्थित में वृद्धि को हानि होती है। इसके अतिरिक्त फाइलोजेनेटिक विश्लेषण एवं जीनोम संगठन से दबाव के दोरान ट्रांस्क्रिप्शनल एवं ट्रांस्लेशनल घटनाओं में संभावित भूमिका वाले दो विशिष्ट उप परिवारों में बैक्टीरियल nanoRNases की क्लस्टिंग का पता चलता है।

एंडोग्लिन-जीआईपीसी अंत:क्रिया के प्रावरोध का पैनक्रिएटिक कैंसर कोशिका की वृद्धि दर्शाता

एंडोगिलन, ट्यूमर-से सम्बद्ध एंडोग्लिन कोशिकाओं में अत्यधिक निष्पीडित 180-kDa डाईसल्फाइड संबंधी होमो डाइमेरिक ट्रांस्मेम्ब्रेन रिसेप्टर प्रोटीन, जीएआईपी-अंत:क्रिया करने वाले प्रोटीन, सी टर्मिनस (जीआईपीसी) का एंडोजीनस बन्ध भागीदार है। एंडोग्लिन ТβRII के सह-ग्राही के रूप में कार्य करता है जो बांधता है और यह वेस्कूलर विकास के लिए महत्वपूर्ण है तथा फलत: यह एंजियो जेनिक रोधी उपचारों के लिए अकाट्य लक्षय बन गया है। तथापि, जठरांत्र स्ट्रोमल ट्यूमर (जीआईएसटी); छाती के कैंसर और अंडाशय कैंसर, में कुछ ताजा अध्ययनों से पता चलता है कि एंडोग्लिन ट्यूमर कोशिकाओं में अपरेगूलेटिड हो जाता है और घटिया अनुमान से सम्बद्ध है। यह खोज एंजियोजेनिक प्रभावों से आगे ट्यूमर बायोलॉजी में एंडोग्लिन की व्यापक भूमिका को दर्शाती हैं। सीएसआईआर-आईजीआईबी ने पैनक्रियटिक कैंसर कोशिका लाइनों में एंडोग्लिनके RNAi-आधारित एवं पेप्टाइड लिगैंड-आधारित संदमन दोनों के क्रम प्रसारी-रोधी प्रभाव का विश्लेषण किया है, दूसरा महत्वपूर्ण क्रम प्रसारी रोधी गतिविधि सहित जीआईपीसी पीडी2 क्षेत्र-लिक्षत लिपोपेप्टाइड उत्पन्न करता है। यह आगे दर्शाता है कि एंडोग्लिन संदमन पैनक्रियटिक कैंसर कोशिकाओं में विशिष्ट फीनोटाइप को उत्प्रेरित करता है तथा उन्हें परंपरागत कीमोथेरेप्यूटिक औषधि जेमसिटाबाइन के लिए संवेदनशील बनाता है। यह अत्यधिक महत्वपूर्ण है कि हमने अंत:पात्र पैनक्रिएटिक कैंसर जीनोग्राफ्ट मॉडल्स में एंडोग्लिन की प्रतियोगी संदमक आधारित ब्लॉकिंग के ट्यूमर रोधी प्रभाव को प्रदर्शित किया है। संभवतया यह पैनक्रियटिक कैंसर कोशिकाओं में टार्गेटिंग एंडोग्लिन के प्रभाव का पता लगाने वाली पहली रिपोर्ट है।

2014-15

शीतकाल के दौरान सक्रिय रूप से बढ़ने वाले और सदापर्णी चाय के पेड़ के गैर-पणपाती स्वभाव का निर्धारण करने वाले शीतकालीन निष्क्रिय प्ररोहों का आरएनए-सीक्वे-व्यवहित ट्रांस्क्रिप्टॉम विश्लेषण

चाय [कैमिलिया सिनेंसिस (एल) ओ. कुंटजे] बारहमासी वृक्ष है जो पणपाती वृक्षों की तरह शीतकालीन निष्क्रियता में चला जाता है, यह प्रजाति शीतकाल के दौरान अपनी पत्तियों को नहीं फैलाती है। सीएसआईआर-आईएचबीटी ने लम्बे समय से चले आ रहे प्रश्न: चाय अपर्णपाती प्रजाति क्यों होनी चाहिए? इसको समझने के लिए ट्रांस्क्रिप्टॉम विश्लेषण के माध्यम से सिक्रय वृद्धि एवं शीतकालीन निष्क्रियता की अविध के दौरान पत्तियों में परिचालित होने वाली आणिवक क्रियाओं का विश्लेषण किया है। प्रारंभिक तौर पर संकलित 57, 767 ट्रांस्क्रिप्ट्स से प्राप्त 24, 700 यूनिजींस के विश्लेषण ने दर्शाया (i) शीत सद्धाता की प्रक्रिया का परिचालन, (ii) वृद्धि, विकास, प्रोटीन संश्लेषण एवम कोशिका विभाजन से सम्बद्धजीनों के डाउन-रेगूलेशन और (iii) चाय में शीत कालीन निष्क्रियता के दौरान सीनेसन्स के मॉड्यूलेशन से संबंधित प्रक्रियाओं के कारण पत्ती के अपच्छेदन का अवरोधन। इन सीनेसन्स संबंधित प्रक्रियाओं ने पत्ती के अपच्छेदन का समर्थन करने वाले मॉड्यूलेशन को दर्शाया। (i) शीतकाल के दौरान पर्णपाती पापुलुस्ट्रेमूला में, और (ii) साथ ही चाय में परन्तु ओस्मेटिक स्ट्रेस के तहत जिसके दौरान पत्तियों का अपच्छेदन भी होता है। इन परिणामों ने पत्ती के अपच्छेदन हेतु अभिनिधारित सीनेसन्स संबंधित प्रक्रियाओं की प्रासंगिकता को प्रमाणिक किया और चाय में आवश्यकता पडने पर इनके परिचालन का खुलासा किया।

ट्रांसजेनिक एरेविडोप्सिस थैलियाना में PaSOD एवं RaAPX का एकसाथ अति-निष्पीडन वेसक्यूलर लिग्निफिकेशंस में वृद्धि के माध्यम से शीत दबाव सहाता प्रदान करता है

प्रति ऑक्सीकारक एंजाइम सिक्रिय कोशिकाओं से दबाव के दौरान सृजित सिक्रय ऑक्सीजन प्रजातियों (आरओएस) के विषाक्त स्तरों को समाप्त करने में महत्वपूर्ण भूमिका निभाते हैं। सीएसआईआर-आईएचबीटी ने दो विभिन्न प्रति ऑक्सीकारक एंजाइमों नामशः पोटेंटिला एस्ट्रिसँगुनिआ (PaSOD) से व्युत्पन्न कॉपर-जिंक सुपरॉक्साइड डिस्म्यूटेज और रियेम ऑस्ट्रेल से एस्कोबेंट परॉक्सीडेज (RaAPX) का क्लोन किया है ये दोनों हिमालय के अति उच्चाई के शीत क्षेत्र के पादप हैं और शीत दबाव को कम करने के लिए एरेबिडोप्सिस थैलियाना में एक साथ अति निष्पीड़न किया। यह पाया गया कि दोनों जीनों का अतिनिष्पीड़न करने वाले ट्रांसजेनिक पादप संवृद्धि एवं परिवर्धन के दौरान दोनों में से एक जीन का निष्पीड़न करने वाले ट्रांसजेनिक पादपों की तुलना में शीत दबाव के लिए अधिक सहाता वाले थे। दोनों एकल (PaSOD एवं RaAPX) और दुगुने (PaSOD + RaAPX) ट्रांसजेनिक पादपों में समग्र प्रति ऑक्सीकारक एंजाइम गतिविधियां, क्लोरोफिल अवयव, समग्र सोल्यूबल शुगर्स, प्रोलाइन अवयव के उच्चतर स्तरों और आरओएस आयन लीकेज के न्यूनतर स्तरों को रिकॉर्ड किया गया जब शीत दबाव (4° से.) के दौरान WT से तुलना की गई, इसके अतिरिक्त पैदावार में वृद्धि हुई। लिग्निनबायोसिंथेटिक पाथवे जींस की निष्पीड़न विधि पर qPCR डाटा के संयोजन से कॉन-फोकल और SEM विश्लेषण से पता चला कि ट्रांसजेनिक पादपों की शीत दबाव सहाता प्रति ऑक्सीकारक जीनों की मध्यस्थता को सिक्रय करके लिग्निन के परॉक्साइड उत्प्रेरित अपरेगूलेशन के कारण हो सकती है।

कैथेप्सिन बी सिस्टीन प्रोटिएस जीन पत्ती की जीर्णता के दौरान अनियंत्रित होता है और यह *पिक्रोरिजा कुरूआ* रॉयले एक्स बेंथ में फाइटोहॉर्मोन्स की अनुक्रिया में खास नि<mark>ष्पीड़न व्यवहार दर्शाता है</mark>

पिक्रोरिजा (पिक्रोरिजा कुरुआ ऑयले एक्स बेंथ-पश्चिमी हिमालय क्षेत्र की हर्ब) के औषधीय महत्व और रेड डाटा बुक में इसकी संकटापन्न स्थित औषधीय उपयोग हेतु इसकी उपलब्धता, इसकी संवहनीयता एवं सुधार सुनिश्चित करने के लिए सघन आर एंड डी अंतराक्षेपों की तत्काल आवश्यकता है। सीएसआईआर-आईएचबीटी ने पिक्रोरिजा में कैथेप्सिन बी सिस्टीन प्रोटिएस का अध्ययन किया है। कैथिप्सन बी सिस्टीन प्रोटिएस की विविध प्रक्रियाओं यथा जीर्णता, अपच्छेदन, प्रोग्राम्ड सेल डेथ, फलों के पकने और रोगजनक और कीट आक्रमणों की अनुक्रिया में कार्य करने की जानकारी दी गई है। पूर्ण लम्बाई के cDNA में 1080bp के ओपन रीडिंग फ्रेम सहित 1369 bp, 80 bp 5' अरूपांतरित क्षेत्र और 209 bp 3' अरूपांतरित क्षेत्र सिम्मिलत तथा निगमित PK-cbcp प्रोटीन में 39.981 kDa के वजन का अणु और 5.75 आईसोइलेक्ट्रिक पोइंट सहित 359 एमिनों एसिड्स सिम्मिलत था। द्वितीय संरचना विश्लेषण से पता चला कि PK-cbcp में 28.97% α-हीलिसेस, 14.48% β-टर्न्स, 19.50% एक्सटेंडिड स्ट्रेंड्स और 37.05% रैंडोम क्वाइल्स थे। अर्धमात्रात्मक पीसीआर विश्लेषण से पता चला कि जीर्णता के दौरान PK-cbcp का निष्पीडन पूर्व-शीर्णता की तुलना से 157% अधिक का पता चला। इसके अतिरिक्त, फाइटोहॉर्मोन्स एब्सिस एसिड, जैस्मोनिक एसिड एवं साइटोकिनिन के अनुप्रयोग ने PK-cbcp की अस्थायी निष्पीडन स्थिति को प्रभावित किया। एब्सिसिक एसिडऔर जैसमेनिक एसिड ने निष्पीडन स्तर में वृद्धि की जबकि साइटोकिनिन ने

2014-15

निष्पीडन कम किया। इन खोजों <mark>से पिक्रोरिजा</mark> में पत्ती की जीर्णता में PK-cbcp की भूमि<mark>का का पता चलता है जो</mark> फाइटोहोर्मोन्स के द्वारा खासतौर पर मध्यस्थता कर सकता है।

जीनोम-व्यापक अभिनिर्धारण एवं मैलस 🗴 डोमस्टिका में एनबीएस संकेतन जीनों का निष्पीडन विश्लेषण एवं रोजेसी में एनबीएस जीनों की श्रेणी का विस्तार

न्यूक्लियोटाइड बाइंडिंग साइटल्यूसीन-रिच रीपीट्स (एनबीएस-एलआरआर) रोग प्रतिरोधी प्रोटीन रोगजनक आक्रमण से सुरक्षा के लिए पादपों में महत्वपूर्ण भूमिका निभाते हैं। अनेक महत्वपूर्ण पादप प्रजातियों में एनबीएस-एलआरआर जीन वर्गों का अभिनिधारण एवं अभिलक्षणन करने के लिए अनेक ताजा अध्ययन किए गए हैं। सीएसआईआर-आईएचबीटी ने अत्यधिक सख्त कंप्यूटेशनल विधियों के इस्तेमाल से 1015 NBS-LRRs युक्त NBS-LRR जीन वर्ग का अभिनिधारण किया है। इन NBS-LRRs का संरक्षित प्रोटीन मोटिफ्स, जीन डूप्लीकेशन इवेंट्स, क्रोमोसोल स्थलों, पॉलीजेनेटिक संबंधों और डिजिटल जीन निष्पीडन विश्लेषण के आधार पर अभिलक्षणित किया था। सेब में टोल/इंटरल्यूकिन-1 रिसेप्टर (टीआईआर) और कॉइल्ड कॉइल (सीसी) (1:1) के समान वितरण की आश्चर्यजनक रूप से पता लगाया गया था जबकि असामान्य वितरण की अन्य सभी ज्ञात पादप जीनोम अध्ययनों की बड़ी संख्या में जानकारी दी गई थी। जीन डूप्लीकेशन इवेंट्स के पूर्वानुमान से गुप्त रूप से पता चला कि सिर्फ टेंडेम डूप्लीकेशन बल्क सेगमेंटल डूप्लीकेशन भी सेब में एनबीएस-एलआरआर जीन वर्ग के विस्तार के लिए समान रूप से जिम्मेवार हो सकते हैं। सेब और मात्रात्मक रीअल-टाइम पीसीआर (qRT-PCR) के निष्पीड़न का पता चला। कुल मिलाकर यह अध्ययन सेब में रोग प्रतिरोधकता में सुधार के लिए भावी प्रयासों हेतु ब्लूप्रिंट उपलब्ध कराएगा।

सैपियम सेबिफेरम \mathbf{Roxb} में लिटर फाल और इसका अपघटन, पश्चिमी हिमालय में आक्रामक वृक्ष प्रजातियां

इस बात को मान्यता देते हुए कि उच्च लिटर फाल एवं इसका तीव्र अपघटन आक्रामक प्रजातियों की मुख्य विशेषताएं हैं, सैपियम से बिफेरम Roxb में लिटर फाल एवं इसके अपक्षय के सीएसआईआर-आईएचबीटी द्वारा पालमपुर में अध्ययन किए गए थे। $50x50cm^3$ विमा के लिटर ट्रैप्स में प्रजातियों को अंडर-कैनोपी और कैनोपी गैप में रखा गया। लिटर फाल का मासिक तौर पर मॉनीटरन किया गया और इसे विभिन्न घटकों में पृथक किया गया। लिटर अपक्षय अध्ययनों के लिए 2mm आकार की जाली सिहत $25x20cm^2$ विमा के लिटर बैगों का इस्तेमाल किया गया और इनका पाक्षिक आधार पर विश्लेषण किया गया। अंडर-कैनोपी और कैनोपी गैप दोनों में लिटर फाल नवम्बर में उच्चतम (अंडर कैनोपी में 1, $16\ mgha^{-1}y^{-1}$ और मैनोपी गैप में $0.38\ mgha^{-1}y^{-1}$) था और मार्च के दौरान न्यूनतम था। अंडर कैनोपी और कैनोपी गैप के तहत लिटर उत्पादन क्रमश: $4.04\ mgha^{-1}y^{-1}$ और $1.87\ mgha^{-1}y^{-1}$ था। ये मान पश्चिमी हिमालय के साल जंगल $(1.7\ t\ c\ ha^{-1}y^{-1})$, चीढ़ देवदार - मिश्रित जंगल $(2.1\ t\ c\ ha^{-1}y^{-1})$, और मिश्रित बलूत-शंकु वृक्ष जंगल $(2.8\ t\ c\ ha^{-1}y^{-1})$ के तुल्य हैं। अपक्षय दर अंडर-कैनोपी में 0.46% दिन⁻¹ और कैनोपी गैप में 0.48% दिन⁻¹ तीव्र थी। इसके कारण ये प्रजातियां अपने लाभ के लिए आवासों को आशोधित कर सकती है, जैसा कि कहीं अन्यत्र जानकारी दी गई है।

आर्थ्राइटिस-रोधी गुणों वाला पृथक किया गया नया अणु

सीएसआईआर-आईआईआईएम ने आर्थ्राइटिस गुणों सिहत हिमालय के पादप में पाए जाने वाले नए अणु को पृथक किया है। स्थानीय रूप से प्रसिद्ध पातालभीड़ा (बीर्जीनिया सिलियाटा) इस पादप में पाए जाने वाला अणु रूमेटिक आर्थ्राइटिस की औषधि हेतु उदीयमान कैंडीडेट है। बूढ़ों में आम में पाए जाने वाले रूमेटिक आर्थ्राइटिस को प्रात:कालीन अकड़न और जोड़ों में शोथ द्वारा अभिलक्षणित किया है। सीएसआईआर-आईआईआईएम के वैज्ञानिकों द्वारा विकसित यह औषधि शोथ को रोकने वाली पाई गई हैं एवमं दर्द को कम करती है। रूमेटिक आर्थ्राइटिस की मौजूदा औषधियों के ओस्टियोपोरोसिस, वजन बढना, क्षयरोग एवं संक्रमणों की सुग्राह्मता में वृद्धि जैसे गंभर दुष्प्रभाव होते हैं।

2014-15

5-प्रतिस्थापी-1**H**-पाइरेजोलो [4, 3-d] पाइरीमिडिन – ७(६ **H**)-एक एनालॉग्स का संश्लेषण और कैंसररोधी कर्मकों के रूप में इनका जैविक मल्यांकन: mTOR संदमक

सीएसआईआर-आईआईआईएम ने 1H-पाइरेजोलो [4, 3-d] पाइरीमिडिन -7(6H-अकेले की श्रृंखला के संश्लेषण हेतु माइक्रोवेव समर्थित रणनीति विकसित की है और कैंसर रोधी कर्मकों के रूप में इनके जैविकमूल्यांकन की व्याख्या की है। इस संश्लिष्ट प्रोटॉकॉल में K2S208 की उपस्थित में विभिन्न एल्डीहाइड्स सिहत 4-एमिनो-1-मेथिल-3-प्रॉपाइल-1H-पाइरेजोलो-5-कार्बोक्सामाइड के ऑक्सीकर युग्मन द्वारा साधारण प्रक्रिया सिम्मिलत है जो उत्कृष्ट प्राप्ति में 5-प्रतिस्थापी-1H-पाइरेजोलो [4, 3-d] पाइरीमिडिन-7(6H)-अकेला यौगिक प्रदान करता है। मानव कैंसर सेल लाइन्स HeLa, CAKI-1, PC-3, MiaPaca-2, A549 के प्रति अन्त:पात्र कैंसररोधी गतिविधि स्क्रीनिंग ने बेहतर परिणाम दर्शाए। यौगिक 3m के विस्तृत क्रियाविधिक सह संबंध अध्ययनों से पता चला कि यह यौगिक एपोप्टोसिस तंत्र के द्वारा कैंसर रोधी गतिविधि दर्शाता है तथा साथ ही यह नोनोमोलर शक्ति सिहत mTOR का संदमन करता है। यह डिजाइन mTOR प्रोटीन सिहत डॉकिंग पर आधारित था। सांद्रण आश्रित कोशिका चक्र विश्लेषण, वेस्टर्न ब्लॉटिंग प्रयोग एवं न्यूक्लियर सेल मॉफॉलॉजी अध्ययनों की व्याख्या की गई है।

विभिन्न स्रोत की कैंसर कोशिकाओं में कोशिका चक्र रूकावट और एपोप्टोसिस को उत्प्रेरित करने वाले बेटुलिनिक एसिड के नवीन नैफ्थॉल व्युत्पन्न द्वारा फॉस्फोटाइडाइलिनोसिटॉल-3 काइनेज पाथवे का संदमन

बेटुलिनिक एसिड (बीए) विभिन्<mark>न प्रकार के कैंसरों</mark> में कोशिका वृद्धि के संदमन की जानकारी दे<mark>ने वाला पेंटा साइक्लिक</mark> ट्राइटरपेनॉइड प्राकृतिक उत्पाद है। तथापि, बीए का आगे चिकित्सी<mark>य विकास खराब</mark> विलेयता और भेषजीय गुणों के कारण रूक गया । <mark>यह दिलचस्प बा</mark>त है कि यह अण् इससे संबंधित मामलों का समाधान करने के लिए संरचनात्मक रूपांतरणों हेत् अनेक हॉटस्पॉट्स प्रस्तुत करता है। सीएसआईआर-आईआईएम ने इसकी कोशिका विष एवं भेषज गुण विज्ञानीय शक्यता में <mark>सुधार लाने के लिए</mark> वांछित रसायन रूपांतरण के लिए सी-3 पॉ<mark>जिशन का चयन</mark> किया है और बीए के विभिन्न ट्राईपजोलाइन व्युत्पन्नों की लायब्रेरी तैयार <mark>की है। इनमें हमने पू</mark>र्व में संभावित अणु अर्थात कैंसर कोशिका वृद्धि <mark>के महत्वपूर्ण संदम</mark>न सहित {IN (5-हाइड्रॉक्सी-नेफ्थ-1yl)-1H-1, 2, 3-ट्राइएजोल-4yl} मेथिलॉक्सी बेट्रलिनिक एसिड (एचबीए) के अभिनिर्धारण और उनके गुणों की जानकारी दी थी। वर्तमान अध्ययन में हमने पहली बार दर्शाया <mark>है कि एचबीए ने फॉस्फोटाइ</mark>डाइलिनोसिटॉल-3 काइनेज (P13K) p110a p85a के निष्पीडन को कम किया तथा अन्त:पात्र मॉडलों के रूप में ह्युमन ल्युकेमि<mark>या और छाती के</mark> कैंसर की कोशिकाओं के इस्तेमाल से pAKT एवं NFkB का महत्वपूर्ण डाउन रेग्युलेशन प्रेरित किया। इसके अतिरिक्त यह पता चला कि एचबीए द्वारा पी13के संदमन ने विभिन्न कोशिका चक्र नियंत्रक प्रोटीनों पर प्रभावों से कोशिका चक्र को उत्प्रेरित किया जिसमें CDKis साइक्लिस और pGSK3β सम्मिलित हैं। साथ ही यह लक्ष्य विशिष्ट संदमन माइट्रोकोंड्रियल एपोप्टोसिस से सम्बद्ध था जैसाकि माइटो कोंड्रियल बैक्स को संवर्धित निष्पीडन, डाउन रेग्यूलेटिड bc12 एवं प्रतिक्रियाशील ऑक्सीजन किरमों के सृजन और माइटोकोंड्रियल मेम्ब्रेन शक्यता में ह्रास के साथ-साथ साइटोक्रोम सी के माइटोक्रेंडियल स्तरों में कमी द्वारा दर्शाया गया था। एपोप्टोटिक प्रयास यथा कैस्पेस 8्र कैस्पेस 9 एवं कैस्पेस 3) डीएनए मरम्मत से सम्बद्ध एंजाइम के अतिरिक्त अपरेग्यूलेटिड पाए गए थे अर्थात पीएआरपी क्लीवेज के कारण कैंसर सेल समाप्त हुई। फार्माकॉडाइनेमिक मूल्यांकन से पता चला कि एचबीए एवं बीए 2000 ${
m mg/kg}$ वॉडीवेट की खुराक तक तथा स्वीकार्य फार्माकोडाइनेमिक मानदंडों सहित सुरक्षित थे। अंत:पात्र कैंसररो<mark>धी गतिविधि से सम</mark>र्थित अंत:पात्र आंकड़ा जिनमें सहर्लिच <mark>ठोस ट्यूमर ने दर्शाया कि</mark> एचबीए किसी बॉडीवेट लॉस मॉर्टेलिटी के बिना बीए की तुलना में अधिक शक्तिशाली कर्मक है।

IL-6 संदमकों के तौर पर पाइरेनो –आइसोक्रोमेनोन्सः संश्लेषण, अंतःपात्र एवं अंतर्जीवे आर्थ्राइटिक रोधी गतिविधि

बर्जिनिन (1) बर्जिनिया प्रजातियों से पृथक अद्वितीय फ्यूज्ड सी-ग्लाइकोसाइड रोचक शोध-रोधी एवं दर्द-रोधी गतिविधियां रखता है। इस स्केफोल्ड के एस ए आर का अध्ययन करने के लिए सीएसआईआर-आईआईआईएम ने लिम्फोसाइट प्रोलिफरेशन एवं प्रो-इन्फ्लेमेटरी साइटोकाइनेस के संदमन के लिए प्रथम पीढ़ी के व्युत्पन्नों का संश्लेषण एवं मूल्यांकन किया है। सी-7 प्रतिस्थापी व्युत्पन्नों ने आईएल-6 तथा $TNF-\alpha$ उत्पादन का संदमन दर्शाया। बर्जिनिन एवं इसके अत्यधिक शक्तिमान आईएल-6 संदमक व्युत्पन्नों 4e एवं 4f की अंत:पात्र एवं अंतर्जीवे शोध/आर्थ्राइटिस मॉडलों के पैनल में जांच की गई। टीएचपी-1 कोशिकाओं में इन यौगिकों ने एनएफ-केबी और $IKK-\beta$ के निष्पीड़न में अत्यधिक कमी की। बीएएलबी/सी चूहों में अन्तर्जीव अध्ययन में एसआरबीसी-उत्प्रेरक साइटोमाइनेज के खुराक-आश्रित संदमन, ह्यूमोरल/सेल-मीडिएटिड इम्यूनिटी में कमी और एंटीबॉडी टाइटर देखे गए। डीबीए/1जे चूहों में सीआईए अध्ययन ने ईगित किया कि यौगिकों से पंजों के सूजन, साइटोकाइन स्तरों और एंटीकॉलेजन IgG1/IgG2a स्तरों में कमी आई।

2014-15

पाइरेनो-आइसोमेनोन्स की अं<mark>तर्जीव इम्यूनोसप्रे</mark>सिव में महत्वपूर्ण अगली-पीढी की आर्थ्राइटि<mark>स रोधी औषधियों</mark> के विकास हेतु इस स्केफॉल्ड की आशा को दर्शाती है।

क्रियाशील क्विनोलिन्स के धातु-मुक्त, आयनी तरल-मध्यस्थ संश्लेषण

सीएसआईआर-आईआईआईएम ने प्रतिक्रिया माध्यम के रूप में इमिडेजोलियम केशन-आधारित आयनी तरलों के इस्तेमाल से एनिलाइन्स एवं फिनाइल एसिट एल्डीहाइड्स से प्रतिस्थापी क्विनो लिंस के निर्माण हेतु समीचीन एवं धातु मुक्त संश्लिष्ट प्रॉटोकॉल का विकास किया है। क्रियाविधिक विश्लेषण ने दर्शाया कि आइसोलेबल 2, 3-विप्रतिस्थापी क्विनोलिन अंत:मध्यस्थों का उत्पादन करने के लिए सी-सी एवं सी-एन बांड निर्माण के माध्यम से प्रतिक्रिया होती है जिन्हें 3-प्रतिस्थापी क्विनलिन्स का उत्पादन करने के लिए सी-सी बांड भेदन से गुजरना पड़ता है। यह प्रतिक्रिया बेहतर प्राप्ति में व्यावहारिकताओं की रेंज में सुचारू रूप से होती है। इस प्रॉटोकॉल के लाभों में धातु-मुक्त पर्यावरणीय अनुकूल, रिसाइक्लेबल रिएक्शन मीडिया, अधिक प्राप्ति और लघुतर प्रतिक्रिया अवधियां सम्मिलत हैं और इस प्रकार संरचनात्मक रूप से विविध 2.3-विप्रतिस्थापी और 3-प्रतिस्थापी क्विनोलिंस के दक्ष मिश्रित संश्लेषण हेतु उदीयमान है।

टाइटेनियम डाइऑक्साइड नैनोपार्टिकल्स-उत्प्रेरित ऑक्सीडेटिव स्ट्रेस चूहों में डीएनए क्षति एवं यकृत घाव को बढाता है

उपभोक्ता एवं औद्योगिक उत्पादों में धातु ऑक्साइड नैनो पार्टिकल्स (टाइटेनियम डाइऑक्साइड) का उपयोग उनकी गुणवत्ता में तो सुधार लाता ही है लेकिन मानव एवं पर्यावरणीय आरोग्यता पर संभावित दुष्प्रभावों को भी कम करता है। सीएसआईआर-आईआईटीआर ने लगातार 14 दिनों के लिए माइस ओरेली का विकास किया है और विभिन्न यकृत एंजाइमों में परिवर्तनों, उत्तक विकृत विज्ञानीय परिवर्तनों, आक्सीकारक दबाव, डीएनए क्षित, ट्यूमर सप्रेसर और यकृत कोशिकाओं में प्रोएपोप्टोटिक प्रोटीन निष्पीड़न हेतु विश्लेषण किया। 100mg/kg बॉडी वेट की खुराक पर यकृत एंजाइमों और यकृत कतक विकृति विज्ञान के स्तर में महत्वपूर्ण परिवर्तन देखा गया है। यकृत कोशिकाओं में महत्वपूर्ण ऑक्सीकारक डीएनए क्षित देखी गई, जो ऑक्सीकारक दबाव को बढ़ा सकती थी। इसके अतिरिक्त, p53, BAX, कैस्पेस-3 और -9 प्रोटीनों के संवर्धित निष्पीड़न और एंटीएपोप्टोटिक प्रोटीन Bcl-2 के कम निष्पीड़न से एपोप्टोसिस के मूलभूत पाथवेज के सक्रियण का पता चलता है। यकृत ऊतक में टाइटेनियम डाइऑक्साइड नैनो पार्टिकल्स के अधिक संचयन से मूलभूत पाथवेज के द्वारा डीएनए क्षित एवं एपोप्टोसिस होगा।

ड्रोसोफिला मीथुसेलाह में <mark>उत्परिवर्तन पैराक्वैट - फीना टाइप्स जैसे उत्प्रेरित पार्किंसन का प्रतिरोध करता है</mark>

पार्किसन का रोग (पीडी) व्याप्त है और न्यूरोडिजनरेटिव रोग को समाप्त करता है जिसके उपचार के संक्षिप्त विकल्प हैं और मध्य मस्तिष्क के सबस्टेंसिया नाइग्रा रीजन में डोपामिनार्जिक न्यूरोन्स की क्षित से गहरा संबंध रखता है। पीडी की इटियोलॉजी में आनुवंशिकी एवं पर्यावरणीय दोनों कारक सिम्मिलत हैं पैराक्वेट (पीक्यू), व्यापक रूप से उपयोग में लाए जाने वाला हर्बिसाइड, पीडी के रोगजनन से संबंधित माना जाता है। सीएसआईआर-आईआईटीआर। ने जानकारी दी है कि ड्रोसोफिला मेथुसेलाह (mth(1)) में उत्परिवर्तन, जो आयु वृद्धि से संबंधित है, पीक्यू-प्रभावित जीव में डोपानिरजिक न्यूरोन कोशिका समाप्ति को रोकने में भूमिका निभाता है। mth(1) से प्रभावित मिक्खयों ने पीक्यू-उत्प्रेरित पार्किसन के फीनोटाइप्स और ऑक्सीकारक दबाव, डोपामिन रजिक न्यूरोनैल डीजनरेशन, लोकोमोटर निष्पादन, डोपामीन अवयव, फॉस्फोरीलेटिड JNK, pFOXO, Hid और क्लीव्ड कैस्पास-3 स्तरों के अनुसार व्यवहार के प्रति महत्वपूर्ण प्रतिरोधकता दर्शाती हैं। इसके विपरीत, डोपामिनर्जिक न्यूरोन्स में mth का अति निष्पीडन ऑक्सीकारक दबाव, न्यूरोनल कोशिका समाप्ति और स्वभावजन्य कमी के लिए प्रभावित जीव को और अधिक संवेदनशील बनाता है। इस अध्ययन से पता चलता है कि mth(1) से प्रभावित मिक्खयों के डोपामिनर्जिक न्यूरोन्स में जेएनके-मीडिएटिड एपोप्टोसिस का कमतर सक्रियण पीक्यू-उत्प्रेरित क्षित से जीव की रक्षा करता है जिसे सामान्य तौर पर पीक्यू-उत्प्रेरित न्यूरोजीनरेशन हेतु सामान्य क्रियाविध से जोड़ा जा सकता है।

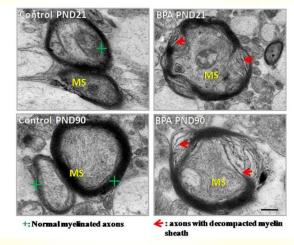
रसायन-उत्प्रेरित विकासात्मक तंत्रिका विषाक्तता हेतु अंतःपात्र मॉडल प्रणाली के विकास की प्रगतिः प्रगतिः मूल कोशिकाओं की संभाव्य प्रयोजनीयता

विकासात्मक तंत्रिका विषाक्तता (डीएनटी) तंत्रिका विज्ञान का ऐसा क्षेत्र है जिसमें अभी तक *अन्तर्जीव* मॉडल प्रणालियों के द्वारा सर्वोत्तम खोज की गई है, परन्तु मानवों के आंकड़े के गलत वर्हिवेशन ने इसकी आगे की प्रगति को चुनौती दी है। सीएसआईआर-आईआईटीआर ने मॉर्फोलॉजिकल एवं क्रियाशील

2014-15

न्यूरोनल कोशिकाओं में hCBSCs के अवकलन की कोशिकीय एवं उप कोशिकीय घटनाओं के मानचित्रण का प्रदर्शन किया है। यह आंकड़ा गर्भावस्था एवं जीवन की आरंभिक अवस्था के दौरान मानव मस्तिष्क के तंत्रिकीय विकास, घाव एवं मरम्मत अनुकरण से सम्बद्ध जिंटल प्रक्रियाओं में गहरी अन्तर्दृष्टि प्रदान करता है। यह खोज की गई है कि hCBSCs को क्रियाशील न्यूरोन्स में परिवर्तन करना मास्टर रेगूलेटर सिग्नैलिंग मॉलिक्यूल्स/कैस्केड्स कितना मुश्किल है तथा वास्तव में क्या होता है जब तंत्रिकीय विकास की जिंटल प्रक्रिया के दौरान हालत बिगड़ जाती है। सीएसआईआर-आईआईटीआर के वैज्ञानिकों ने सभी अवकलन के माध्यम से जीन बायोटिक मेटाबोलाइजिंग क्षमताओं एवं hCBSC से व्युत्पन्न न्यूरोनल कोशिकाओं में इनके रेगूलेटर्स के बीच नवीन संबंधों का भी खुलासा किया है। इन परिणामों ने दर्शाया कि एक समान कोशिकाएं और प्रारंभिक अलग-अलग कोशिकाएं अधिक संवेदनशील थीं और पूर्णतया पृथक परिपक्व कोशिकाओं की तुलना में जीनोबायोटिक्स के प्रति अत्यधिक सुभेद्य थी। विकासशील न्यूरोन्स संबंधी आंकड़ा न्यूरोडीजनरेटिव रोगों और संभावित चिकित्सीय अंतराक्षेपों को समझने के लिए न सिर्फ लोकप्रिय रूपरेखा प्रस्तुत करता है बल्कि मानव मस्तिष्क विशिष्ट डीएनटी की व्याख्या करने से संबंधित लक्षित भावी अध्ययनों हेतु सुदृढ़ आधार भी प्रस्तुत करता है।

मिनोसाइक्लिन जिंक-उत्प्रेरित निग्रोस्ट्रिटेल डोपामिनर्जिक न्यूरोडीजनरेशन से मुक्त करता है: जैव रसायन एवं आणविक अंतराक्षेप

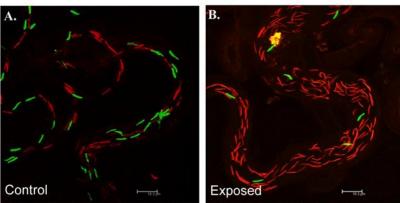

डॉपामिनर्जिक न्यूरोन्स में जिंक (Zn) का संचयन पार्किसन रोग (पीडी) का संकेत है और माइक्रोलिएल सक्रियण विषाक्त उत्प्रेरित पार्किसोनिज्म में महत्वपूर्ण भूमिका निभाता है। ऑक्सीकारक दबाव जिंक-उत्प्रेरित डॉपामिनर्जिक न्यूरोडीजनरेशन का दोषी है; तथापि, माइक्राग्लिएल सक्रियण से इसका संबंध अभी तक अज्ञात है। सीएसआईआर-आईआईटीआर ने Zn-उत्प्रेरित नाइग्रोस्ट्रिएटल डॉपामिनर्जिक न्यूरोडीजनरेशन में माइक्रोग्लिएल सक्रियण की भूमिका एवं मुख्य क्रियाविधि को स्पष्ट करने के लिए अध्ययन किए हैं। नर चूहों के विस्तार का 2-12 सप्ताह के लिए मिनोसाइक्लिन (30mg/kg) माइक्रोग्लिएल सिक्रयण संदमक की उपस्थिति/अनुपरिश्वित में जिंक सल्फेट (20mg/kg) सिहत/रहित इंट्रोपेरिटोनियली उपचार किया गया। जबिक पीडी का न्यूरोवीहेवियरल एवं बायोरसायन इंडेक्सेस और डॉपामिनर्जिक न्यूरोंस की संख्या कम की गई, Zn स्टेशिया निग्रा में माइक्रोग्लिएल कोशिकाओं की संख्या बढ़ाई गई। इसी प्रकार Zn ने लिपिड परॉक्सीडेशन (एलपीओ) और सुपरॉक्साइड डिस्म्यूटेज (एसओडी) की गतिविधियों एवं निकोटिन एमाइड एडिनाइन डाइन्यूक्लियोटाइड फॉस्फेट (एनएडीपीएच) ऑक्सीडेज को बढ़ाया; तथापि, कैटालेज सिक्रयता कम की गई। इसके अतिरिक्त, Zn ने मेम्ब्रेन के साथ एनएडीपीएच ऑक्सीडेज सबयूनिट p67^{Phox} के सहयोग को बढ़ाया, माइटोक्नोंड्रिया और प्रो-कैस्पेस 3 के क्लीवेज से साइटोक्रोम सी जारी होता है। Zn ने टाइसोसिन हाइड्रॉक्सीलेज (टीएच) और वेसिक्यूलर मोनोएमाइन ट्रास्पोर्टर-2 (वीएमएटी-2) के निष्पीइन को कम किया जबिक डोपामीनट्रांस्पोर्टर (डीएटी) और हीम ऑक्सीजीनेज-1(एचओ-1) के निष्पीइन में वृद्धि की। मिनोसाइक्लिन ने Zn-उत्प्रेरित, व्यवहार संबंधी क्षति टीएच-धनात्मक न्यूरोन्स की क्षति, सिक्रियेत माइक्रोग्लिएल कोशिकाओं और बायोकेमिकल इंडेक्सेस को कम किया तथा साधारण अवस्था के लिए अध्ययन किए गए जीनों/प्रोटीनों के निष्पीइन को व्यवस्थित किया। परिणाम दर्शाते हैं कि मिनोसाइक्लिन सक्रियेत माइक्रोग्लिएल कोशिकाओं की संख्या एवं ऑक्सीकारक दबाव को कम करता है, जो मोनोएमाइन ट्रांस्पोर्टर और निग्रोस्ट्रिएटल डॉपामिनर्जिक न्यूरोडीजनरेशन के निष्पीडन में Zn-उत्प्रेरित परिवर्तों से मृक्त करता है।

2014-15

चूहे के मस्तिष्क के हिपोकैम्पस में विकास के दौरान बाइस्फीनॉल-ए माइएलिनेशन संभाव्यता को क्षीण करता है

माइलिन ओलिगोर्डंड्रोसाइट्स (ओएल) का क्रियाशील संबंध है जो एक्सोंस के रोधन में सिम्मिलित है तथा मिस्तष्क में क्रिया के तीव्र फैलाव को बढ़ाता है। ओएलएस ऑिलगोर्डंड्रोसाइट प्रोजिनेटर सेल्स (ओपीसीएस) से उत्पन्न होते हैं जो पूरे केन्द्रीय तिव्रका प्रणाली में उत्पन्न, पृथक और स्थानांतिरत होते हैं। माइएिलनेशन प्रक्रिया में खराबी से अनेक न्यूरोलॉजिकल एवं न्यूरोडीजनरेटिव रोगों के आक्रमण होते हैं। सिंधेटिक जीनोइस्ट्रोजीन बाइस्फीनॉल-ए (बीपीए) के प्रभाव से संज्ञानात्मक क्रिया, अपसामान्य हीपोकेम्पेल न्यूरोजीनेसिस होता है और न्यूरोडबलप्मेंटल रोगों का आक्रमण होता है। तथापि ओपीसी प्रचुरोद्धवन, पृथक्करण एवं माइएिलनेशन तथा चूहे के मस्तिष्क में हीपोकेम्पस में संबंधित कोशिकीय एवं आणविक तंत्र(तंत्रों) पर बीपीए के प्रभाव व्यापक तौर पर अनिषक्त हैं। सीएसआईआर-आईआईटीआर ने पता लगाया है कि बीपीए ने ब्रोमोडीऑक्सीयूरिडिन (BrdU)-धनात्मक कोशिका प्रचुरोद्धवन तथा ओलिगोस्फेयर्स की संख्या और आकार में अत्यधिक कमी की। यह देखा गया है कि माइएिलनेशन मार्कर्स CNPase और प्लेटलेट व्युत्पन्न वृद्धि घटक रिसेप्टर-α(PDGFR-α) सिहत BrdU के कम किए हुए सह-स्थायीकरण से संवर्धन में बीपीए द्वारा OPCs के कीण प्रचुरोद्धव एवं पृथक्करण का पता चलता है। सीएसआईआर-आईआईटीआर के वैज्ञानिकों ने प्रसवोन्तर 21 एवं 90 दिन पर चूहे के मस्तिष्क के हीपोकेम्पस रीजन में माइएिलनेशल प्रक्रिया में कोशिकीय एवं आणविक परिवर्तन (नों) संबंधी प्रसव-पूर्व एवं प्रसवोत्तर अवधियों के दौरान बीपीए प्रदर्शन के प्रभावों का भी अध्ययन किया है। बीपीए OPCs के अंत:पात्र एवं अंतर्जीव परिवर्तित प्रचुरोद्धवन एवं पृथक्करण संभाव्यता दोनों का खुलासा करता है तथा माइएिलनेशन में सिम्मिलित जीनों और प्रोटीनों के स्तरों के निष्पीड़न में कमी की। अल्ट्रास्ट्रक्चरल इलेक्ट्रॉन माइक्रोस्कॉपी विश्लेषण से पता चला कि बीपीए प्रभाव में सिम्मिलित जीनों और प्रोटीनों के स्तरों के निष्पीड़न में कमी की। अल्ट्रास्ट्रक्चरल इलेक्ट्रॉन माइक्रोस्कॉपी विश्लेषण से पता चला कि बीपीए प्रभाव नियंत्रण की तुलनोंटिड एक्सोंस और परिवर्तित g-अनुपात दोनों विकासात्मक अवधियों का निसंहनन होता है। इन परिणामों से पता चलता है कि बीपीए प्रसव-पूर्व एवं प्रसवोत्तर दोनों अवधियों के दौरान चूहे के मस्तिष्क के हीपोकेम्पस में परिवर्तन करता है जिससे संज्ञानत्व के स

चित्र: 1.11: चुहे के मस्तिष्क के हीपोकैम्पस में माइऐलिनेशन को परिवर्तन करने वाले बीपीए प्रदर्श के प्रभाव


एंडोसल्फेन की अनावृत्ति <mark>ड्रोसोफिला मीलैनोगैस्टर में</mark> शुक्राण् पर बराबर का प्रभाव डाल<mark>ना</mark>

जीनोबायोटिक्स के कारण कम हो रही नर जनन क्षमता वैश्विक चिंता है। तदनुसार प्रभावित नरों में शुक्राणु गुणवत्ता विश्लेषण के माध्यम से जीनोबायोटिक्स की नर जननीय विषाक्तता मूल्यांकन और उनके सहायकों की संतित की प्रजननीय जांच करना कठिन है। ये आमाप, अंशत:, मोनो गैमी के प्रति दबाव डालते हैं। कई प्रजातियों में मादाओं का बहु नर भागीदों से इच्छा रखना प्रतिमान है। बहुपति प्रथा शुक्राणु स्पर्धा को उत्तेजित करती है और मादाओं को पक्षपात पूर्ण उपयोग की अनुमित देता है। शुक्राणु स्पर्धा की सहायता से शुक्राणु पर जीनोबायोटिक प्रभाव के परिणामों को समझना शेष है। सीएसआईआर-आईआईटीआर ने एंडोसल्फेन के लिए ड्रोसोफिला मीलैनोगेस्टर नरों का खुलासा किया है और उनके संतित प्रजनन तथा नरों के नियंत्रण/अनावृत को क्रमानुसार निष्प्रभ करने वाली मादाओं के भंडारण अंगों में प्रतिरोधी नियंत्रण शुक्राणु का सामना करने के लिए उनके शुक्राणु की क्षमता का मूल्यांकन किया

2014-15

है। एंडोसल्फेन (2 µg/ml) की संतित की उत्पत्ति एवं प्रजनन से संबंध कुछ जीनों के निष्पीडन पर कोई महत्वपूर्ण प्रभाव नहीं पड़ा। तथापि, प्रभावित नरों ने 1(पहले) एवं 2(दूसरे) दोनों नर प्रतिद्वन्दियों के शुक्राणु बराबरी में घटिया निष्पादन किया। इन निष्कर्षों ने दर्शाया कि प्रजनन क्षमता के साधारण-अप्रतिस्पर्धी माप प्रजनन पर जीनोबायोटिक्स पर निम्न स्तर के प्रकटन के हानिकारक प्रभावों तथा प्रकृति में मौजूद अनुकरण स्थितियों के लिए जीनोबायोटिक्स के प्रजननीय विषाक्तता मूल्यांकन में मानदंड के रूप में शुक्राणु बराबरी के विचार का समर्थन करने में असफल हो सकते हैं।

चित्र:1.12 आरआर-एसआर: प्रति<mark>द्वन्दी नियंत्रण शुक्राणु के</mark> विरूद्ध एंडोसल्फेन से प्रभावित नरों से शुक्राणु की सुर<mark>क्षा क्षमता का मूल्यां</mark>कन । पैनल ए एवं बी नियंत्रण/अनावृत स्थितियों <mark>के</mark> तहत मादाओं के सेमिनैल रिस्पटेकल में क्रमश: प्रथम एवं द्वितीय नर के ईजीएफपी (हरे) एवं dsRed (लाल) लेबल लगे शुक्राणु को दर्शाते हैं

ह्यूमन होलो-ट्रांस्फेरिन की <mark>कोशिका-सतह प्रच्छादन</mark> एवं समावेशन द्वारा *माइकोबैक्टीरि<mark>यम ट्यूबरक्यूलोसिस</mark> का* आयरन ग्रहण करना

माइकोबैक्टीरियम ट्यूबरक्यूलोसिस (M.tb) को उत्तरजीविता हेतु आयरन की आवश्यकता होती है जिसे वह साइरोफोरेस के रूप में ज्ञात आयरन के लिए आवश्यक अणुओं का संश्लेषण और फैगोसोम के लिए होस्ट आयरन-ट्रांस्पोर्ट प्रोटीन ट्रांस्फेरिन को सुधार कर इस तत्व को प्राप्त करता है। साइरोफोरेस ट्रांस्फेरिन से आयरन को अलग करता है और इसे बैक्टीरियम में पहुंचाता है। सीएसआईआर-आईएमटीईसीएच ने आयरन अधिग्रहण के लिए अतिरिक्त क्रियाविधि की व्याख्या की है जिसमें M.tb प्रोटीन होगा जो ह्यूमन होलो-ट्रांस्फेरिन को M.tb कोशिकाओं में पहुंचाता है। रोगजनक स्ट्रेन M.tb H37Rv ने अनेक प्रोटीनों को व्यक्त किया है जो ह्यूमन होलो-ट्रांस्फेरिन को रोक सकती है। इनमें से एक प्रोटीन ग्लाइकोसाइटिक एंजाइम ग्लाइसरएल्डीहाइड-3-फॉस्फेट डिहाइड्रोजीनेज (GAPDH, Rv 1436) है जो M.tb और इसके संबंधित माइकोबैक्टीरियम स्मेग्मैटिस की सतह पर उपस्थित रहती है। जीएपीडीएच के अतिनिष्पीडन के परिणामस्वरूप M.tb कोशिकाओं के लिए आवश्यक ट्रांस्फेरिन और आयरन उद्ग्रहण में वृद्धि हुई। ह्यूमन ट्रांस्फेरिन ने संक्रमित बृहत भक्षकाणुओं के भीतर जीएपीडीएच-पराश्रित ढंग में संपूर्ण माइकोबैक्टीरियल कोशिका भित्ति को समावेशित किया है।

मूनलाइटिंग कोशिका सतह जीएपीडीएच मैमेलियन कोशिकाओं से निकलने वाले आयरन पर प्रभाव डालने के लिए एपोट्रांस्फेरिन का संवर्धन करता है

आयरन (Fe^{2+} , Fe^{3+}) होमिओस्टेसिस लौह प्रवाह और कोशिकाओं के निर्गम को नियंत्रित करने वाला अत्यधिक व्यवस्थित प्रक्रम है। यद्यपि आयरन किरयर द्वारा कोशिकाओं में इसके आयात की क्रियाविधि सुलक्षणित की गई है, आयरन एक्सपोर्ट की समझ अपर्याप्त है। वर्तमान प्रतिमानों में इसके कोशिकीय इम्पोर्ट (ट्रांस्फेरिन रिसेप्टर्स) अथवा एक्सपोर्ट (फैरोपोर्टिन, एसएलसी 40ए1 के रूप में भी जाना जाता है) के लिए विशिष्ट बृहत्त आणिकों से संबंधित विशिष्ट कार्यों की कल्पना की है। पूर्व अध्ययनों से पता चलता है कि आयरन डिप्लेटिड सेल्स आयरन करियर होलो ट्रांस्फेरिन के समावेश के लिए अपनी सतह पर ग्लाइसरेल डिहाइड-3 फॉस्फेट डिहाइड्रोजीनेज (जीएपीडीएच), बहुकार्यन, 'मूनलाइटिंग' प्रोटीन का सृजन करती हैं। सीएसआईआर-आईएमटीईसीएच ने जानकारी दी है कि इंट्रासेलूलर आयरन की अधिकता के रूपांतरण की स्थित के तहत कोशिकाएं अपनी सतह पर उस एक के लिए जीएपीडीएच की आइसोफोर्म को परिवर्तित करती हैं जो अब आयरन के बहिस्रवण को सुगम बनाने के लिए फेरोपोर्टिन के अत्यधिक सहयोग से आयरन युक्त एपोट्रांस्फेरिन उत्पन्न करता है। सतही जीएपीडीएच के निष्पीड़न में वृद्धि एपोट्रांस्फेरिन बाइंडिंग में वृद्धि से सह सम्बद्ध था और कोशिकाओं से आयरन एक्सपोर्ट में वृद्धि जीएपीडीएच-नॉक डाउन सेल्स में क्षमता नष्ट हो जाती है। इन निष्कर्षों ने आयरन ऑवरलोड के रॉडेंट मॉडल के

2014-15

अंतर्जीव उपयोग की पुष्टि <mark>की थी । इसके अति</mark>रिक्त पहली बार एपोट्रांस्फेरिन रीसेप्टर <mark>का अभिनिर्धारण कर</mark>ते हुए यह कार्य कोशिकीय सूक्ष्म पोषक आवश्यकताओं की व्यवस्था कर<mark>ने के लिए बहु कार्या</mark>त्मक मॉड्यूल्स के पारस्परिक स्विचन का खुलासा करता है ।

क्लेबसीला निमोनिये में औषध प्र<mark>तिरोध में शामिल</mark> नवीन बह औषध बहिस्रवण पम्प की भूमिका

सीएसआईआर-आईएमटीईसीएच ने बहु औषध प्रतिरोधक क्लेब्सीला निर्मानिये की भूमिका का अध्ययन किया है जिससे तनाव उत्पन्न करने वाले विस्तारित स्पेक्ट्रम β -लैक्टेमेज के उद्भवन के कारण सम्पूर्ण विश्व में मुख्य चिकित्सीय समस्याएं होती हैं । यद्यपि K. न्यूमोनिएे बैसिलस की जीनोम सीक्वेंस में >10 मेजर फैसिलिटेटर सुपर फैमिली (एमएफएस) बिहस्रवण पम्पों की व्याख्या की गई है जो स्पष्ट तौर पर अपनी क्रियात्मक प्रासंगिकता के बारे में कम जाना जाता है । kpnGH के अन्तर्वेशन निष्क्रियण के परिणामस्वरूप रंजकों एवं डिटर्जेंट्स यथा एथिडियम, ब्रोमाइङ; एक्रिफ्लेवाइन, डीऑक्सीचॉलेट, सोडियम डोडीसाइल सल्फेट सिहत प्रति जैविकों यथा एजिथ्रोमाइसिन, सेफ्टाजिडाइम, सिप्रोफ्लोक्सेसिन, इर्टापेनेम, एरिथ्रोमाइसिन, जेंटामाइसिन, इमिपेनेम, टाइकार्सिलिन, नोरफ्लोक्सेसिन, पॉलीमाइक्सिन-B, पिपेरासिलिन, स्पेक्टिनोमाइसिन और स्ट्रेप्टोमाइसिन की सुग्राह्मता में वृद्धि हुई और विसंक्रामकों बेंजएल्कोनियम क्लॉराइङ, क्लोरहेक्साडाइन और ट्राइक्लोजेन K. न्यूमोनिए में सिक्रय उत्सारण द्वारा प्रति सूक्ष्मजीवी प्रतिरोध की मध्यस्थता करता है । kpnGH समजीनी म्यूटेंट K. न्यूमोनिएफिजियोलॉजी में अपनी अतिरिक्त भूमिका पर बल देते हुए कोशिका एन्वलोपस्ट्रेसर्स के प्रति न्यूनतम सह्मता का प्रदर्शन किया । एमएफएस प्रवास पम्प kpnGH में k. न्यूमोनिए में वास्तिवक प्रतिरोध निर्धारक होने के अतिरिक्त महत्वपूर्ण शारीरिक क्रियाओं में सिम्मिलत रहता है ।

संरचनात्मक दृष्टि से एम्फिपैथि<mark>क, झिल्ली सक्रिय</mark> लघु धनायनी पेप्टिडोमिमेटिक्स का बै<mark>क्टीरिया रोधी मू</mark>ल्यांकन: पेप्टिडोमिमेटिक अवयव के रूप में 3-एमिनोबेंजोइक अम्ल को सम्मिलित करते हुए संश्लेषण किया

सीएसआईआर-आईएमटीईसीएच ने प्राकृतिक प्रतिजैविक पेप्टाइड्स (एएमपीएस) के आवश्यक गुणों का अनुकरण करने के उद्देश्य से लघु संरचनात्मक ढांचे में 3-एमिनो बेंजोइक अम्ल (3-एबीए) को सम्मिलित करते हुए लघु धनायनी पेप्टिडोमिमेटिक्स की नई श्रृंखला का संश्लेषण किया है। इस नए डिजाइन दृष्टिकोण के परिणामस्वरूप रेखीय पेप्टाइड्स की तुलना में सिक्रयता एवं चयनात्मकता कम हुई तथा वैज्ञानिकों ने जैविक सिक्रयता पर संरचनात्मक एम्पिफपेथिसिटी के प्रभाव को बेहतर ढंग से समझा। नमूना पेप्टिडोमिमेटिक्स ने प्रतिरोधक रोगजनकों (एमआरएस एवं एमआरएसई) के विरुद्ध बैक्टीरिया रोधी गतिविधियां दर्शाई। कैल्सीन डाईलीरेज परीक्षण से 4g एवं 4l के मेम्ब्रेनो लाइटिक प्रभाव का पता चला जिसकी आगे फ्लूओरीसेंस माइक्रोस्कॉपी द्वारा पृष्टि की गई थी। इसके अतिरिक्त प्रोटिओलाइटिक स्थिरता एवं स्टेफाइलोकोकस ऑरियस के प्रति प्रतिरोध के किसी चिह्न का विकास न होने तथा एमआरएसए ने नवीन प्रतिसूक्ष्मजीवी चिकित्सा शास्त्र के तौर पर आगे विकासार्थ अपनी संभावना का प्रदर्शन किया है।

मधुमेह की स्थिति में प्लाज्मा जेलोसिन के स्तरों में वृद्धि एवं जेलोसिन के एफ-एक्टिन डिपॉलीमेराइजिंग वर्जंस से उपचार में कमी

सीएसआईआर-आईएमटीईसीएच ने मधुमेह रोग से पीडित मनुष्यों और टाइप-II मधुमेह के चूहे माडलों में प्लाज्मा जेलोसिन (pGSN) स्तरों का खाका खींचने तथा चूहों में मधुमेह के सुधार में जेलोसिन चिकित्सा के क्षमता का मूल्यांकन करने के लिए प्रयास किया है। वैज्ञानिकों ने पाया है कि pGSN मानों को टाइप-II मधुमेह से पीडित मनुष्यों एवं चूहों के मॉडलों के रक्त में 0.45 से 0.5 तक घटक कम किया है। चूहों के मॉडलों में ओरल ग्लूकोज सद्याता परीक्षण ने दर्शाया कि पुनर्योगज pGSN और इसके एफ-एक्टिन डिपोलीमेराइजिंग में सक्षम वर्जंस की त्वचा में दवा देने से हाइपर ग्लाइसेमिक स्थित को संभालने के लिए उपयोग में लाई जाने वाली औषधि सीटाग्लिप्टिन की तुलना में ब्लड शुगर स्तरों को कम किया। इसके अतिरिक्त मधुमेह से पीडित चूहों को pGSN अथवा इसके ट्रनकेटिड वर्जंस की एक सप्ताह तक रोजाना खुराक देने से शुगर के स्तरों को सामान्य स्तरों के निकट रखता है। साथ ही 7 दिनोंके लिए सिटाग्लिप्टिन से उपचारित मधुमेह से पीडित चूहों ने उपचार प्रारंभ करने पर अपने स्तरों की तुलना में ब्लड ग्लूकोज में कमी सिहत अपने pGSN मानों में वृद्धि दर्शाई। जेलोसिन ने मधुमेह से पीडित चूहों में ग्लाइसेमिक नियंत्रण में सुधार लाने में सहायता की। हमारा प्रस्ताव है कि जेलोसिन स्तर पर मॉनीटरन और एफ-एक्टिन सीवरिंग केपेबल जेलोसिन (जेलोसिनों) के प्रतिस्थापन पर मधुमेह संबंधी देखरेख करने पर विचार किया जाना चाहिए।

2014-15

सोडीय मुदा में औषधीय एवं सगंध पादपों की खेती करने हेतु औद्योगिक अपशिष्टों का उपयोग करना

निम्नीकृत अपशिष्ट भूमियों के पुन: स्थापन और औद्योगिक अपशिष्टों के संधारणीय उपयोग से प्राकृतिक संसाधनों का संधारणीय विकास अपेक्षित हैं। सीएसआईआर-एनबीआरआई ने सोडीय मृदा में औषधीय एवं सगंध पादपों की खेती करने के लिए उड़न राख और प्रेस मड का उपयोग करने की संभावना का मूल्यांकन करने के लिए प्रयोग किया है। सात उपचार अर्थात T1-कंट्रोल, T2-प्रेस मड @20t ha^{-1} , T3-उड़न राख @20t ha^{-1} , T4-उड़न राख @20t ha^{-1} + प्रेस मड @20t ha^{-1} ha^{-1} h

विषाणु-मुक्त जेरबेरा पादपों का विकास

सीएमवी को अत्यधिक महत्वपूर्ण माना जाता है क्योंकि यह फूल को अत्यधिक विकृत कर देता है जिससे जेरबेरा फूलों के बाजार मूल्य में कमी आती है। सीएसआईआर-एनबीआरआई ने इसकी गुणवत्ता में सुधार लाने के लिए संक्रमित जेरबेरा ev. जिनगैरों के \sim 4x8 mm-कैपिटूलम एक्सप्लांट्स की (30mg/l वाइरेजोल के इस्तेमाल से) अन्त:पात्र कीमोथेरेपी के द्वारा सीएमवी को समाप्त करने का प्रयास किया है। 1mg/l6-बेंजीले मिनोप्यूरिन (बीएपी), 05 mg/l इंडोल-3-एसिटिक एसिड (आईएए) और 0.5 mg/l एडिनाइन सल्फेट से अनुपूरित मुरेशिज एवं स्कूग (एमएस) मीडियम पर 57 पादपों से कुल 38 पादप विकसित किए गए थे। सीएमवी के कोट प्रोटीन विशिष्ट प्राइमर्स के उपयोग से आरटी-पीसीआर द्वारा जांच करने पर विकसित पादपों 81.6% (31/38) पादपों में सीएमवी की अनुपस्थित दर्शाई।

सीएमवी मुक्त पादपों ने बेहतर पादप वृद्धि दर्शाई: पत्ती के लैमिना की लम्बाई में 53.7% और पत्ती की चौड़ाई में 59.2% की वृद्धि तथा बेहतर प्रस्फूटन निष्पादन: फूलों के आकार (से.मी. में व्यास) में 62.6% और गहरे लाल रंग के फूल वाले प्रति गमले के फूलों में नियंत्रित फूलों की तुलना में 69.1% की वृद्धि। जेरबेरा cv जिंगेरो की कैपिटलम एक्सप्लांट्स की (काइरेजोल के इस्तेमाल से) अंत:पात्र कीमोथेरेपी द्वारा सीएमवी के निष्कासन की भारत से पहली बार जानकारी दी गई है।

1.1.2 विकसित प्रौद्योगिकी

फास्ट ट्रैक विकास मोड में <mark>लिए जाने वाले सीएसआईआर-सी</mark>डीआरआई के नए नमूने

- एस 007-867 (एंटीथ्रोम्बोटिक): इस काइरल यौगिक द्वारा प्लेटलेट-कॉलेजैन अन्तः क्रिया संदमन से प्लेटलेट आसंजन और समुच्चयन का संदमन होता है। इसने खवण समय में न्यूनतम वृद्धि सहित थ्रोम्बोसिस के विभिन्न प्रायोगिक मॉडलों में संभाव्य एंटीथ्रोम्बोटिक प्रभावोत्पादकता दर्शाई। सुरक्षित भेषज गुण विज्ञान एवं विषाक्तता अध्ययनों में यह सुरक्षित पाई गई। यह संभाव्य एंटी प्लेटलेट मॉलिक्यूल हेतु प्रथम श्रेणी का उपागम है।
- एस 002-333 (एंटीथ्रोम्बोटिक): यह आदिप्ररूप प्लेटलेट कॉलेजन अंत:क्रिया एवं संभाव्य एंटी प्लेटलेट रेसिमक अणु को रोकता है। अब तक किए गए सुरक्षा अध्ययनों ने इसे सुरक्षित दर्शाया है।
- एस 011-1793 (मलेरिया रोधी): सीक्यू/एमडीआर रॉडेंट परजीवियों के विरुद्ध 25-50 mg/kg पर अन्तर्जीव उपचारात्मक गतिविधि, पीसीटी 72 घंटे, अंत:पात्र एडीएमई अध्ययन किए गए। सिमियन मॉडल में खुराक अनुक्रिया अध्ययनों की योजना बनाई गई।

2014-15

- एस 007-1500 (तीव्र फ्रेक्चर हिलिंग): क्रिया तंत्र अध्ययनों ने दर्शाया कि यौगिक ईआर/बीएमपी2िसग्नैलिंग पाथवेज को सक्रिय करके ऑस्टियो ब्लास्ट विभेदन को प्रेरित करता है। पीके अध्ययन प्रगतिधीन हैं। यह ऑरेलरूट (50.100 mg/kg bw) द्वारा चूहे एवं चूहों में सिंगल डोज विषाक्तता अध्ययनों में स्रक्षित है।
- एस 007-1235 (एंटील्यूकेमिक): लिनोमाइसिन की तुलना में अधिक प्रभावोत्पादकता सहित है। बीसीआर-एबीएल म्यूटेंट ल्यूकेमिया रोगी नमूनों तथा सीडी 133+ कॉलोने कैंसर स्टेम सेल्स के लिए यौगिक साइटोटॉक्सिक पाया गया। लक्ष्य पीटीएक्स संवेदनशील जीपीसीआरएस के रूप में अभिनिर्धारित किया गया चालू लक्ष्य की पृष्टि।

अंडा आधारित सुविधाजनक मिश्रण उपयोग के लिए तैयार

सीएसआईआर-सीएफटीआरआई ने अंडे पर आधारित सेल्फ स्टेबल मौसमी मिश्रण एवं सूप मिश्रण, संवर्धित कार्यात्मक एवं पौष्टिक गुणों सहित विशिष्ट उत्पादों का विकास किया है तथा परिवेशी स्थितियों के तहत उनके भण्डारण स्थिरता अध्ययन किए गए थे। अध्ययन किए गए उत्पादों के विकास हेतु मूल पदार्थ के रूप में अंडे पाउडर का उपयोग करते हुए उत्पाद सूत्रण एवं प्रसंस्करण को इष्टतम बनाया गया। 25-30% अंडा पाउडर दोनों उत्पादों के लिए मिर्च-मसालों सहित इष्टतम पाया गया। सूप मिश्रण एवं मौसमी मिश्रण की P^H एवं जल गतिविधि क्रमशः 5.1, 4.8 एवं 0.856, 0.505 थी। अंडा सूप मिश्रण का मूल संयोजन प्रोटीन 16.36±0.01% वसा 26.91±0.01% एवं आईता 10±1.1% था और मौसमी मिश्रण का मूल संयोजन प्रोटीन 17.64±0.64%, कुल लिपिड्स 32.6±1.14% और आईता 8.46±0.43% था। महत्वपूर्ण खनिजों जिंक, आयरन, कैल्शियम और सोडियम का भी अनुमान लगाया गया था। इंटर कलर मानों ने ईगित किया कि उत्पादों के भंडारण के दौरान कोई महत्वपूर्ण परिवर्तन नहीं था। उत्पादों के भंडारण के दौरान एफएफए और थियोबारबिट्यूरिक एसिड (टीबीए) मानों में कोई परिवर्तन नहीं पाया गया। परिवेशी तापमान 37±2° से. के तहत भंडारण के छह माह बाद 9 पोईट हेडोनिक स्केल के उपयोग से संवेदी मूल्यांकन से कम दर्ज किया गया। तथापि, छह माह के भंडारण के बाद दोनों उत्पाद संवेदी तौर पर अत्यधिक स्वीकार्य थे। मिश्रणों के भंडारण के दौरान कोलिफोर्म्स, स्टेफीलो कोकस और सल्मोनेला का पता लगाया गया। भण्डारण के दौरान टीपीसी और खमीर तथा मॉडल्स 2-3 लॉग्स से कम थे। मेटालाइज्ड फलेक्सिबल पाउचेज में पैक करते समय दोनों मिश्रणों के लिए छह माह की निधानी आयु निधारित की गई है।

पीईटी बोतलों में नीरा

सीएसआईआर-सीएफटीआरआई ने कक्ष तापमान स्थित पर पीईटी बोतलों में नीरा के संरक्षण हेतु प्रक्रम मानदंडों को मानकीकृत किया है। रंग और स्वाद के अनुसार संसाधित नीरा की गुणवत्ता को ताजा नीरा के समान बनाए रखने के लिए योगजों और पाश्चरीकरण स्थितियों के स्तर को इष्टतम बनाए रखने के लिए अनेक परीक्षण किए गए थे। ताजा नारियल सैप को रात्रि में स्वास्थ्य कर-परिस्थितियों में निकाला गया था ताकि इसे धूप से बचाया जा सके और पालकड, केरल से सीएसआईआर-सीएफटीआरआई तक निम्न तापमानों ($<5^{0}$ C) पर ले जाया गया था। सैप को तत्काल अपकेन्द्रित किया गया, अनुमेय योगजों से तैयार किया, ताप से पाश्चरीकृत किया और गरम कर पीईटी कन्टेनर्स में भरा गया। ताजा तथा संसाधित नमूनों का \mathbf{P}^{H} , टाइट्रेटेबल एसिडिटि, ब्रिक्स, सुक्रोज, संवेदी स्वीकार्यता, टोटल प्लेट काउंट, ई.कोली काउंट, खमीर एवं मोल्ड काउंट हेतु विश्लेषण किया गया।

चित्र:1.13: पीईटी बोतलों में नीरा

2014-15

मखाने भुनने के लिए मल्टीस्पाउटिड बेड रोस्टर

मखाना (यूरीऐल फेरॉक्स) अत्यधिक पोषक उत्पाद है जिसमें प्रोटीन (14.52%) कुल वसा (0.01%) फॉस्फोरस (239 मि.ग्रा.), लौह (2236 मि.ग्रा.) जिंक (66 मि.ग्रा.) होते हैं और कॉलेस्टेरॉल नहीं होता है। वर्तमान में मखाना को संसाधित करना कठिन; जटिल एवं अस्वास्थ्यकर है। सीएसआईआर-सीएफटीआरआई ने मखाने के बीजों को संसाधित करने के लिए आवश्यक डिजाइन ड्राइंग्स सहित संकल्पित मल्टी-स्पाउटिड बेड रोस्टर (एमएसबीआर) के प्रायोगिक आंकड़ा समावेश, डिजाइन तैयार किया। मखाने से विभिन्न उत्पादों यथा मखाना फ्लेक्स, मखाना मिल्क पाउडर, डीहेल्ड मखाने और पोप्ड मखाने का उत्पादन करने के लिए विभिन्न प्रौद्योगिकियां विकसित की थी। ये विकसित प्रौद्योगिकियां मूल्यवृद्धि वाले विभिन्न उत्पादों से मखाना उगाने वाले किसानों की आर्थिक समृद्धि में वृद्धि कर सकती हैं।

चित्र:1.14 मखाने भूनने के विभिन्न चरण

आपदा राहत परिचालनों हेतु <mark>खाने के लिए तैयार</mark> पैक भोजन

सीएसआईआर-सीएफटीआरआई ने चपाती, पुलिओगेर, लैमन राइस, टॉमेटो करी और गाजर हलवे की निधानी आयु बढाने के लिए हर्डल प्रक्रम का डिजाइन तैयार किया है। इस अध्ययन में उपयोग में लाए गए हर्डल्स में व्यापक परिस्थितियों के 30 तहत 30 दिन की अपेक्षित निधानी आयु प्राप्त करने के लिए चपाती, पश्चुरीकरण (10 मिन. का पी90) जल गतिविधि नियंत्रण और वैक्यूम पैकेजिंग के मामले में परिरक्षियों की कम डोज सम्मिलत है। संसाधित उत्पाद, सूक्ष्मजीव एवं संवेदी मूल्यांकनों के तहत थे। अन्य हर्डल्स सहित सोबिंक एसिड से चपाती के मामले में साठ दिन और लैमन राइस एवं पुलिओगैरे के मामले में 15 दिन की निधानी आयु प्राप्त की गई, जबिक व्यापक परिस्थितियों में टॉमेटो करी एवं गाजर हलवे की निधानी आयु 90 दिन थी।

चित्र: 1.15 खाने के लिए तैयार पैक भोजन

2014-15

खाने के लिए तैयार सुविधाजनक स्वास्थ्य भोजन

इस अध्ययन हेतु दो अनाज (प्रोसो और फॉक्स टैल) उपयोग में लाए गए थे। प्रोसो एवं फॉक्सटैल अनाजों का अलग-अलग प्रशोधन किया गया तथा इनके कार्यात्मक, प्रवाहिकीय एवं प्रौद्योगिकी लक्षण वर्णन का अध्ययन किया था तािक उन्हें उत्पादों के लिए उचित बनाया जा सके। प्रोसो अनाज के इस्तेमाल से खाने के लिए तैयार नि:स्मवित अल्पाहार के लिए प्रक्रम को मानकीकृत किया गया तथा अभिलक्षणित किया गया। जब 250-300 गेज पीपी/एचएमएचडीपीई पाउच में पैक किया गया तो नि:स्मवित उत्पाद ने 12 माह से अधिक की निधानी आयु दर्शाई। बिस्कुट की लोई पर हाइड्रोकोलॉइड्स के प्रभाव का उनके बिस्कुट उत्पाद गुणवत्तापरक लक्षणों के संबंध में गठन विशेषताओं हेतु अध्ययन किया गया। प्रोसो अनाज से ग्लूटेन मुक्त लोई तैयार की गई जिसका स्वाद एवं संरचना अच्छे हैं और 200 गेज बीओपीपी में पैक किए जाने पर 6 माह तक निधानी आयु बढाई जा सकती है। लेजर आधारित अणु के आकार के विश्लेषक के इस्तेमाल से आटे नमूनों के अणु आकार के वितरण का अनुमान लगाया गया। तैयार की गई खोई के स्वाद गुणों का मूल्यांकन करने के लिए मेटल ऑक्साइड अर्ध-चालक सेंसर्स सहित इलेक्ट्रॉनिक नोज का इस्तेमाल किया गया। विभिन्न प्रकार के हाइड्रोकोलॉइड्स की अनुवृद्धि ने बिस्कुट लोई की कार्यात्मक एवं प्रौद्योगिकी गुणों को बदल दिया और बिस्कुट की गुणवत्ता भी उनकी रचना और अन्य संवेदी गुणों के अनुसार भिन्न थी। नमूनों के संवेदी मूल्यांकन ने दर्शाया कि सभी नमूने संरचना एवं समग्र स्वीकार्यता के अनुसार पूर्ण रूप से स्वीकार्य हैं।

चित्र: 1.16 खाने के लिए तैयार सुविधाजनक स्वास्थ्य भोजन

ताजा लाल मिर्च से जीवाणु रहित पैक मिर्ची पेस्ट

सीएसआईआर-सीएफटीआरआई ने ताजा लाल मिर्च (कैप्सिकम एनूम एल.) से जीवाणु रहित पैक मिर्ची पेस्ट तैयार करने के लिए प्रक्रम का अध्ययन किया है। इस प्रक्रम में मिट्टी, कंकर, धूल एवं अन्य बाहरी पदार्थों को हटाने के लिए 70-80° से. के बीच के तापमान वाले गर्म पानी से धुलाई करने के बाद पकी हुई शिमला मिर्च से हरी शिमला मिर्च अलग करने का ग्रेडिंग/पृथकरण सिम्मिलत है। सतही आईता को समाप्त करने के लिए धुले हुए फलों को हवा/छाया में सुखाना अपेक्षित है। धुली हुई ताजा लाल मिर्ची का फ्रूट मिल में आकार कम करने के बाद उत्तम पेस्ट प्राप्त करने के लिए कॉलोइडल मिल में पीसा जाता है। लाल मिर्ची पेस्ट को बेहतर बनाने के लिए नमक (2-5%) मिलाया गया और थर्मो जीवाणु रहित पाउचों में पैक किया गया। पेस्ट से भरी थैलियों को 800-1500 वाट पावर के माइक्रोवेव में लगभग 10-60 सेकण्ड के लिए संसाधित किया गया। स्वाद और रंग बनाए रखने के लिए किसी योगज का उपयोग नहीं किया गया। सूक्ष्म जैविक विश्लेषण ने एस्पर्जिलस फ्लेवर्स की अनुपस्थित दर्शाई जो एफलेटॉक्सिन बी1 के उत्पादन के लिए मुख्य उत्पादक सूक्ष्म जीव है। ताजा लाल शिमला मिर्च पेस्ट की थर्मो स्टेबल थैलियों में 37+2° से. पर 3 माह की निधानी आयु होती है।

न्यून जीआई नूडल्स

सीएसआईआर-सीएफटीआरआ**ई ने न्यून ग्लाइ**सेमिक इंडेक्स (जीआई) अंश (चिकपिया आटा सीएफ) के इस्तेमाल से नूडल्स संसाधित किए हैं । मिश्रण के 10-60% के स्तरों पर अलग-अलग सीएफ पर तैयार किए गए । तैयार नमूनों के लिए भौतिक-रसायन एवं संवेदी गुणों का विश्लेषण किया गया और परिणामों ने दर्शाया कि 50% सीएफ समावेशन सहित नूडल्स स्वीकार्य थे । कुकिंग के परिणामस्वरूप नूडल्स की कुकिंग गुणवत्ता स्वीकार्य स्तरों (<80%)

2014-15

के भीतर नष्ट हो जाती है। नूड<mark>ल्स में सीएफ</mark> सम्मिलित करने से संरचना मजबूत हो गई। सूक्ष्म संर<mark>चना विशेष</mark>ताओं ने वर्धित सीएफ को सम्मिलित करने पर प्रोटीन मैट्रिक्स विघ्न दर्शाया।

मिसोप्रोस्टोल-चिकित्सा गर्भपात हेतु उपयोगी औषध के लिए प्रक्रम

सीएसआईआर-आईआईसीटी ने चिकित्सा गर्भपात के लिए उपयोगी औषध मिसो प्रोस्टोल हेतु प्रक्रम विकिसत किया है। मिसो प्रोस्टोल को प्रसव पीड़ा प्रारंभ करने के लिए अनिवार्य औषधि के रूप में डब्ल्यूएचओ द्वारा प्रोस्टेग्लेंडिन पर आधारित महत्वपूर्ण औषधि घोषित की गई है। इस औषधि को अल्सर रोधी कर्मक के रूप में दर्द निवारकों के संयोजन के रूप में भी उपयोग किया जाता है। यह प्रौद्योगिकी मेसर्स एवरा लैबोरेटरीज को हस्तांतरित की गई है जिसने इस प्रौद्योगिकी को सफलतापूर्वक वाणिज्यीकृत किया है। सीएसआईआर-आईआईसीटी की प्रौद्योगिकी ने इस औषधि के उत्पादन की लागत को सफलतापूर्वक कम किया है तथा देश के आम आदमी को इसे खरीदने के लिए समर्थ बनाया है।

माइक्रो पीसीआर

विभिन्न रोगों का निदान करने के लिए बैटरी चालित हाथ में पकड़ा जा सकने वाला माइक्रो पीसीआर विकसित किया गया है जिन रोगों का निदान किया जा सकता है वे निम्नवत हैं: तपेदिक, मलेरिया, डेंगू, चिकनगुनिया, हिपेटिटिस सी एवं एच1 एन1। यह विश्व स्तर का उत्पाद है जिसका 100 से अधिक राष्ट्रों में पेटेंट किया जा चुका है। उद्योग भागीदार बिगटेक लैब्स ने भारत और विदेश में इस उपकरण की बिक्री करने के लिए संयुक्त उद्यम नामश: मोल्बियो डायम्नोस्टिक्स का गठन किया है। यह कंपनी राष्ट्रीय टीबी का पता लगाने और नियंत्रण कार्यक्रम को सशक्त बनाने के प्रयास में आरएनटीसीपी के साथ टीबी परीक्षण हेतु, टीबी और औषध प्रतिरोधी टीबी का पता लगाने हेतु इसे और अधिक प्रामाणिक करना चाहती है। साथ ही सरकारी कार्यक्रम यथा राष्ट्रीय वेक्टर जिनत रोग नियंत्रण कार्यक्रम महामारियों को फैलने से रोकने के लिए विश्वसनीय एवं सस्ते निदान उपकरणों की उपलब्धता से अत्यधिक लाभांवित होंगे। यह कंपनी वर्तमान में एचआईवी, हीपेटिटिस सी और अन्य एसटीडी और श्वसन संबंधी रोगजनकों हेतु परीक्षणों का विकास कर रही है तािक न्यूक्लिक एसिड प्रवर्धन परीक्षण (एनएएटी) प्रचलित संक्रमित रोगों के निदान हेतु स्वर्णमान बन सकते हैं। इस उपकरण की लागत परंपरागत रीअलटाईम पीसीआर की तुलना में दस गुणा और बाजार में मौजूद एनएएटी परीक्षणों की तुलना में पांच गुणा कम है तथा सरकारी कार्यक्रमों में इन्हें पहले से अपना कर इस लागत को और अधिक कम किया जा सकता है।

'कैटेचिन' निष्कर्षण से कैंसररोधी चाय कैप्सूल

सीएसआईआर-आईएचबीटी ने चाय की नई पत्तियों से 'कैटेचिन' के निष्कर्षण हेतु पर्यावरण अनुकूल, विलायक मुक्त हरित प्रक्रम प्रौद्योगिकी विकसित की है। कैटेचिन बीमारियों से लड़ने वाला एक तरह का फ्लैवोनोइड तथा प्रतिऑक्सीकारक है। यह प्रौद्योगिकी वाणिज्यिक उपयोगार्थ उद्योगों को हस्तांतरित की जा रही है। हालांकि कैटेचिंस रोगशामक नहीं है फिर भी ये रोग निवारक के रूप में कार्य करेंगे क्योंकि हमारे शरीर में ऑक्सीजन मुक्त मूलकों के कारण होने वाली क्षति को कम करते हैं जो विभिन्न प्रकार के कैंसर का कारण भी होते हैं।

मधुमेह हेतु हर्बल सूत्रण

सीएसआईआर-एनएमआईटीएलआई कार्यक्रम के अंतर्गत मधुमेह के उपचार के लिए हर्बल आधारित सूत्रण का विकास किया गया है। इस तकनीकी जानकारी को मेसर्स विरिदिस बायोफार्मा प्रा.लि., मुम्बई को हस्तांतरित किया गया है। इस प्रयोजनार्थ लाइसेंस करार पर सीएसआईआर एवं विरिदिस ने हस्ताक्षर किए। आशा की जाती है कि इस सूत्रण की तकनीकी जानकारी के हस्तांतरण से सीएसआईआर के सस्ते स्वास्थ्य सुरक्षा फोकस पर लिक्षत विकसित उत्पाद का विपणन होगा।

1.2 रसायन विज्ञान

1.2.1 वैज्ञानिक उत्कृष्टता

रंजक-संवेदी सौर सेल्स की संवर्धित फोटो वोल्टेइक निष्पादकता के लिए अत्यधिक अनावरित (001)-पहलूओं वाले TiO_2 नैनो शीट्स सीएसआईआर-सीईसीआरआई ने अत्यधिक अनावरित (001)-पहलूओं वाले TiO_2 नैनो शीट्स का संश्लेषण किया है तथा वाणिज्यिक रूप से उपलब्ध P_{25} से तुलना की है। परिणाम दर्शाते हैं कि संश्लिष्ट TiO_2 नैनोशीट्स का विशिष्ट क्षेत्र लघुतर होता है और फिर भी इसकी रंजक भार सहन करने की

2014-15

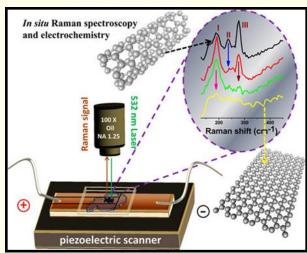
उच्चतर क्षमता होती है। P25 से निर्मित समरूपी रंजक संवेदी सौर सेल्स (डीएसएससी) से तुलना करने पर सेल दक्षता (n) में यह 26.7% संवर्धन प्रदान करता है। पर्याप्त अभिलक्षणन आंकड़ा प्राप्त किए गए तािक TiO_2 नैनोशीट्स की 001 सतिही गतिविधि और उपकरण निष्पादकता पर इनकी भूमिका को समझा जा सके। लघुतर विशिष्ट सतह क्षेत्र पर उच्चतर रंजक-लोड क्षमता बतलाने के लिए उपयुक्त तंत्र प्रस्तावित है। इसके अतिरिक्त, TiO_2 की सामान्य फोटो करंट के अनुसार दीर्घ वेबलेंथ क्षेत्र (600-800) समेकित फोटो करंट सघनता का 52.9% योगदान देता है; यह परिणाम आगे दीर्घ वेबलेंथ क्षेत्र में इनके श्रेष्ठ प्रकाश प्रकीर्णन गुणों की पृष्टि करते हैं। 8.77% का इष्टतम n p25 (6.92%) सहित डीडीएससी हेत् प्राप्त किया है।

नाइट्रोजन एवं प्लेटिनम-डोप्ड ${ m TiO_2}$ की प्रकाशीय फोटो उत्प्रेरक गतिविधियां: सह-डॉप्टेंट्<mark>स के सहक्रियात्म</mark>क प्रभाव

नाइट्रोजन डोप्ड TiO2 (N-TiO2) की दृश्यमान प्रकाशीय फोटो उत्प्रेरक गतिविधि गैसीय एवं जलीय चरणों में मॉडल सबस्ट्रेट्स की ऑक्सीकारक एवं अपचयी निम्नीकरण हेतु Pt आयनों की सह-डॉप्डिंग सहित संवर्धित की गई सीएसआईआर-सीईसीआरआई द्वारा इन संक्षिष्ट नमूनों को विभिन्न तकनीकों (विसरित परावर्तकता UV-Vis, XPS, XRD, FT-IR, HR-Tem, EDX) और लेजर फ्लैश फोटोलिसिस स्पेक्ट्रोस्कॉपी) द्वारा अभिलक्षणित किया गया । TiO2 के N एवं Pt की सह-डॉप्डिंग (TiO2 (Pt, N-TiO2) ने दृश्यमान प्रकाश (>420nm) के अंतर्गत एसीटेलडीहाइड (गैस चरण) और ट्राइक्लोरो एसीटेट (टीसीए) (जलीय) तथा Cr(VI) (जलीय चरण) के अपचय को अत्यधिक बढ़ाया । Pt, N-TiO2 की देखी गई दृश्यमान प्रकाशीय फोटो उत्प्रेरक गतिविधि एकल-डोप्ड TiO2 (Pt-TiO2 अथवा N-TiO2) की तुलना में अधिक चिह्नित की गई । समयाविध स्थिर करने वाली विसरित परावर्तकता (टीडीआर) अध्ययन में पाया गया कि Pt (2+ और 4+) के विभिन्न ऑक्सीकरण अवस्थाओं की उपस्थित Pt-TiO2 में चार्ज ट्रैपिंग एवं गतिकी हस्तांतरण में महत्वपूर्ण भूमिका निभाती है । Pt, N-TiO2 के टीडीआर अध्ययन से आगे स्पष्ट हुआ कि सह-डॉप्डिंग के सहक्रियात्मक प्रभाव प्रत्येक डॉपेंट के संयुक्त योगदान के लिए उत्तरदायी होता है । अंततः डॉप्ड TiO2 हेतु प्रथम प्रमुख गणना से पता चलता है कि TiO2 में Pt एवं N की इलेक्ट्रॉनिक अंतःक्रिया चार्ज करियर की गतिशीलता को सुगम बनाती है और अनपेक्षित पुनर्सयोजन को कम करती है जिससे फोटो उत्प्रेरक गतिविधि का संवर्धन होता है ।

बेहतर इलेक्ट्रॉड्स एवं सेंसर्स हेतु इंजीनियरी ग्रेफीन

सीएसआईआर-सीईसीआरआई ने टाटा मूलभूत अनुसंधान संस्थान (टीआईएफआर) के सहयोग से विद्युत रसायन अनुप्रयोगों यथा संवेदी एवं ऊर्जा प्रौद्योगिकियों में इलेक्ट्रॉड्स ज्यामितियों की इंजीनियरी के महत्व का प्रदर्शन किया है। अति लघु संवेदकों एवं उपकरणों के क्षेत्र में तकनीकी उन्नित नवीन माइक्रो अथवा नैनो-आधारित आर्किटेक्चर्स के बेहतर इलेक्ट्रॉड्स एवं सेंसर्स विकास हेतु इंजीनियरी ग्रेफीन की मांग करती है। इन आवश्यकताओं को पूरा करने के लिए क्रॉस लिंक्ड तीन विमीय ग्रेफीन नैनोरिबंस (3डी जीएनआर) आधारित इलेक्ट्रॉड का डिजाइन किया गया है एवं उन्हें एकत्र किया गया है जबिक विशिष्ट 2डी जीएनआरएस को कॉवेलेंट लिंकर के द्वारा एक साथ जोड़ा गया है। इस प्रकार डिजाइन किए गए उडी इलेक्ट्रॉड विशाल दूगूनी परत का कैपेसिटेंस (2482 µF.cm²) और तीव्रतर इलेक्ट्रॉन हस्तांतरण गतिकी दर्शाता है। ऑक्सीजन न्यूनीकरण प्रतिक्रिया के लिए इसकी आपवादिक विद्युत-उत्प्रेरक गतिविधि विद्युत रसायन अनुप्रयोगों की व्यापक श्रेणी हेतु इसकी शक्यता के पूर्व संकेत हैं। इस अध्ययन ने चिकित्सीय अनुप्रयोगों हेतु नवीन सुरक्षा बिन्दु उपकरणों के डिजाइन एवं ऊर्जा उपकरणों हेतु इलेक्ट्रॉड्स के लिए नए मंच की शुरुआत की है। प्राय: विद्युत सिक्रय सतही क्षेत्र की प्रचुर उपलब्धता संवेदी एवं ऊर्जा प्रौद्योगिकियों सिहत नई विद्युत रसायन अनुप्रयोगों हेतु अति आवश्यक होती है। इसे प्राप्त करने के लिए शोधकर्ताओं ने उच्च सतही क्षेत्र वाली नैनो मैटिरियल्स का इस्तेमाल करने का प्रयास किया है। तथापि, ऐसे आशोधनों से इलेक्ट्रॉन हस्तांतरण दर अथवा अन्य प्रेक्षित विद्युत रसायन अनुक्रियाओं में कोई महत्वपूर्ण सुधार नहीं हुआ है। परिणाम इस बात के प्रमाण हैं कि उडी जीएनआर ने इस अध्ययन में निष्पादित किए गए सभी विद्युत रसायन अनुक्रियाओं में अपने 2डी प्रतिरूपों से बेहतर परिणाम इस बात के प्रमाण हैं कि उडी जीएनआर ने इस अध्ययन में निष्पादित किए गए सभी विद्युत रसायन अनुक्रयोगों में अपने 2डी प्रतिरूपों से बेहतर परिणाम दिए।


रमन स्पेक्ट्रोस्कॉपी एवं इमे<mark>जिंग द्वारा स्वस्थाने</mark> स्पष्ट किए गए सिंगल वाल्ड कार्बन नैनोट्यूब्स से ग्रेफीन रिबंस को खोलने वाले क्रमिक विद्युत रसायन

सीएसआईआर-सीईसीआरआई <mark>ने सीएसआईआर-</mark>एनसीएल के साथ संयुक्त रूप से सिंगल-वाल्ड <mark>कार्बन नैनोट्यूब्</mark>स को खोलने वाले विद्युत रसायन की रमन स्पेक्ट्रोस्कॉपी एवं माइक्रोस्कोपिक स्वस्थाने जांच की जानकारी दी है। रमन स्पेक्ट्रल मैपिंग के इस्तेमाल से रेडियल ब्रेथिंग मॉड्स (RBMs) के

2014-15

प्रक्षणों से पता चलता है कि धात्विक SWNTs अर्ध चालक SWNTs को धीरे-धीरे खोलने के बाद तेजी से खुलते हैं। अनुनादी रमन प्रकीर्णन सिद्धांतपर विचार करने से पता चलता है कि काइरेलिटिज (10, 4) और (12, 0) के साथ दो धात्विक SWNTs को पहले अपेक्षाकृत उच्चतर शक्यता (1.16V) पर अन्य दो धात्विक ट्यूब्स (9, 3) एवं (10, 1) को धीरे-धीरे खोलने के बाद निम्न इलेक्ट्रोड शक्यता (0.36V) पर खोला गया। तथापि, काइरेलिटिज (11, 7) एवं (12, 5) के साथ अर्ध चालक SWNTs को 1.66V पर धीरे-धीरे खोला जाता है। जैसा कि जी बेंड की अधिकतम चौड़ाई के महत्वपूर्ण परिवर्तन से स्पष्ट हुआ कि SWNTs समूह की धात्विकता में अनुवर्ती नियमित कमी के बाद तीव्र कमी आरबीएम के परिवर्तनों को बेहतर ढंग से पालन करती है। साइक्लिक वोल्टा मीट्री लघुकरण चरण के दौरान ऑक्सीजन कार्यात्मकताओं के अत्यधिक महत्वपूर्ण समापन के बाद ऑक्सीकरण के पश्चात उन्नत कैपेसिटेंस के अनुसार खोलने के लिए प्रत्यक्ष प्रमाण प्रस्तुत करती है जैसािक ग्रेफीन नैनोरिबंस के सूत्रण की पृष्टि करने वाली आकृति विज्ञान के सूक्ष्म परिवर्तनों से प्रतिबिंबित हुआ। सघनता कार्यात्मक-आधारित कड़ी बंधन गणना इपॉक्साइड बाइंडिंग ऊर्जाओं पर काइरलिटी एवं नैनोट्यूब्स के डायामीटर की अतिरिक्त निर्भरता दर्शाती है जो रमन स्पेक्ट्रोस्कॉपिक परिणामों के अनुरूप है और SWNTs एवं अनुप्रयुक्त क्षेत्र की संरचनात्मक विशेषताओं के संयुक्त प्रभावों द्वारा निर्धारित अनजिपिंग के संभावित तंत्र का पता चलता है।

चित्र: 1.17 स्वस्थाने रमन स्पेक्ट्रोस्कॉपी एवं विद्युत रसायन

ऊष्मा रोधी जूता सोल

सीएसआईआर-सीएलआरआई ने 250° सेल्सियस तक के तापमान को रोक सकने वाले जूते का सोल विकसित किया है। यह प्रौद्योगिकी सुरक्षा जूतों के स्वदेशी उत्पादन में समर्थ बनाएगी जिनका वर्तमान में आयात किया जा रहा है। अग्नि एवं आपदा क्षेत्रों में प्रवेश करने वाले सुरक्षा कामगारों के लिए अत्यधिक उपयोगी यह फाइबर प्रबलित प्लास्टिक (एफआरपी) सोल फॉस्फोरस आधारित आसंजकों से लेपित कांच एवं कार्बन फाइबर से बना है। कांच और कार्बन फाइबर तापमानों को रोक सकते हैं क्योंकि इनका गलन बिंदु क्रमश: 1200° सेल्सियस और 3500° सेल्सियस होता है। जूते के सोल के रूप में कार्य करने के लिए इस सामग्री को लचीला एवं उपयुक्त बनाने के लिए कुछ रसायन इसमें सिम्मिलित किए गए हैं। अग्नि दुर्घटनाओं में संपूर्ण देश में सैंकड़ों लोग मारे जाते हैं और हजारों लोग जख्मी हो जाते हैं। सीएसआईआर-सीएलआरआई में विकसित ऊष्मा-रोधी जूते के सोल व्यक्ति को बचने के लिए उपयुक्त समय देगा। इस सामग्री से बने जूते के सोल सुरक्षा कामगारों के लिए भी होंगे। हल्के वजन और लोचदार सोलों का उपयोग सुरक्षा जूतों के अतिरिक्त नियमित जूतों में भी किया जा सकता है।

ग्रीन शू सोल्स बनाने के लिए <mark>चर्मशोधशाला के अ</mark>पशिष्ट को कार्बन में बदलने के लिए प्रक्र<mark>म</mark>

सीएसआईआर-सीएलआरआई <mark>ने मांस और पशु</mark> मसल एवं वसा के कोमल उत्तक और चर्मशो<mark>धशाला में उत्पन्न</mark> बहिस्राव को सक्रिय कार्बन में बदलने के लिए प्रक्रम विकसित किया है। यह यौगिक जूता निर्माण में मुख्य घटक है। यह प्रक्रम न सिर्फ औद्योगिक कार्बन फूट प्रिंट को कम करने में सहायता देगा बल्कि अपशिष्ट से संपदा की अवधारणा को सफलतापूर्वक समाविष्ट करता है। परंपरागत रूप से सक्रिय कार्बन में क्रॉस लिंक कर्मक यथा कैल्शियम

2014-15

ऑक्साइड नहीं होता है अत: <mark>रबड़ का उत्पादन करने</mark> में इसका फिलर के रूप में उपयोग न<mark>हीं किया जा सकता है</mark> । तथापि, मांस अपशिष्ट से रूपांतरि<mark>त</mark> सक्रिय कार्बन में कैल्शियम होता है और रबड़ का उत्पादन करने में फिलर के रूप में प्रभावी ढंग से उपयोग किया जा सकता है ।

प्लास्टिक से ईंधन

भारत में प्लास्टिक उपभोग लगभग ~10MMT (2010) बताया गया है जबिक भारत में प्लास्टिक अपशिष्ट ~10 टीपीडी है जिससे अत्यधिक पर्यावरण प्रदूषण होता है। देश में प्लास्टिक उपयोग की बढ़ती मांग और सम्बद्ध अपशिष्ट सृजन का समाधान करने के लिए संभाव्य समाधान के रूप में सीएसआईआर-आईआईपी ने अपशिष्ट प्लास्टिक्स (सॉलिओलेफिंस) को मूल्य अभिवृद्धि वाले हाइड्रोकार्बनों उदाहरणार्थ गैसोलीन, डीजल एवं एरोमेटिक्स के लिए सरल प्रक्रम विकसित किया है। इस प्रौद्योगिकी की मुख्य विशेषताएं हैं कि यह प्रक्रम पॉली ओलेफिनिक अपशिष्टों (उदाहरणार्थ एचडीपीई, एलडीपीई, पीपी इत्यादि) से एलपीजी के साथ-साथ या तो गैसोलीन अथवा डीजल अथवा एरोमेटिक्स के विशिष्ट उत्पादन के लिए उपलब्ध है तथा यह तरल ईंधन यूरोIII विनिर्देशों को पूरा करता है। इसके अतिरिक्त यह प्रक्रम सरल, प्रदूषण मुक्त एवं पर्यावरण अनुकूल है। 30 टीपीडी संयंत्र हेतु अनुमानित लाभ अविध लगभग 3 वर्ष है।

रिचार्जेबल मैग्नीशियम बैटरी

सीएसआईआर-आईआईसीटी ने प्रारंभिक अनुप्रयोगों सहित रिचार्जेबल बैटरी का विकास किया है जो स्थिर उपकरणों यथा यूपीएस एवं इन्वर्टर्स के लिए अत्यधिक उपयुक्त है। प्राकृतिक ग्रेफाइट कैथोड सहित मैग्नीशियम धातु वाली बैटरी सामान्य तौर पर उपयोग में लाई जा रही लेड बैटरी का दक्ष प्रतिस्थापी हो सकती है। रिचार्जेबल मैग्नीशियम बैटरी की यह प्रौद्योगिकी विश्व के किसी भाग में वाणिज्यीकरण हेतु उपलब्ध नहीं है। इस बैटरी में उपयोग में लाई गई पर्यावरण अनुकूल सामग्री मैग्नीशियम (एनोड), आशोधित प्राकृतिक ग्रेफाइट (कैथोड) और आयनिक लिक्विड इलेक्ट्रोलाइट हैं जो सुरक्षित एवं आसानी से उपलब्ध हैं।

मधुमेह, मोटापा नियंत्रित करने के लिए शिमला मिर्च

सीएसआईआर-आईआईसीटी ने हरी, पीली और लाल शिमला मिर्च को उनके हाइपरग्लाइसैमिक रोधी एवं हाइपर लिपिडेमिक रोधी प्रभाव के लिए विश्लेषण किया और उत्साहवर्धक परिणाम प्राप्त हुए। यह पाया गया कि पीली और लाल शिमला मिर्च व कार्बोहाइड्रेट्स एवं लिपिड्स ने पाचन को धीमा किया। हाल में यह शोध कार्य नेचूरल प्रॉडक्ट्स रिसर्च में ऑन लाइन प्रकाशित किया गया। पीली शिमला मिर्च की तुलना में अल्फा-ग्लूकोसाइडेज एवं लिपेज एंजाइम की गतिविधि का अंतरविरोध किया। हरी शिमला मिर्च की तुलना में यह अंतरविरोध लगभग दुगुना था। पीली और लाल शिमला मिर्च ओलिगोमेराइज्ड एंथोसायेनिंस की उपस्थिति के कारण हरी शिमला मिर्च की तुलना में अधिक प्रभावी थीं। ये हरी शिमला मिर्च में पाए जाने वाले प्रोर्थिसायिनंस से बेहर संदमक थे।

स्थायी उत्प्रेरक सूत्रणों सहित माइक्रो चैनल रिएक्टर्स

सीएसआईआर-आईआईपी ने स्थायी उत्प्रेरक लेपन सूत्रणों सहित माइको चैनल रिएक्टर्स का विकास किया है जो वनस्पित तेलों से जुड़े प्रक्रमों को तीव्र बनाने के लिए इस्तेमाल किए जाते हैं। इन रिएक्टर्स का उत्पाद पैदावार एवं वनस्पित तेलों को हाइड्रो प्रक्रमण में रूपांतरित करने पर अत्यधिक प्रभाव पड़ता है। माइक्रो-चैनल रिएक्टर्स का उन स्थानों पर प्रक्रम को तीव्र करने के लिए उपकरण के रूप में तत्काल अनुप्रयोग किया जाता है जहां कच्ची सामग्री (बायोमास) की आपूर्ति अपर्याप्त होती है; जहां (फीड स्टॉक) शैवाल ईंधनों की आवाजाही की समस्या है। यह सब इन माइक्रो-चैनल रिएक्टर्स द्वारा मुख्यत: समर्थित उत्कृत मिश्रण, नियंत्रित प्रतिक्रिया पर्यावरण और ऊर्जा-दक्षता के कारण संभव हो पाया है।

चाय के पादपों में रेड स्पाइडर माइट हेतु प्राकृतिक कीटनाशी

चाय में रेड स्पाइडर माइट के विरुद्ध प्राकृतिक कीटनाशी: मुख्य चाय पीड़क रेड स्पाइडर माइट के विरुद्ध प्रभावी हर्बल पीड़क नियंत्रण कर्मक का विकास किया गया है। पौधे की पत्तियों <mark>से रेड स्पाइडर माइट</mark> रोधी निष्कर्षण के उत्पादन हेतु प्रायोगिक संयंत्र में उन्नयन अध्ययन प्रारंभ किए गए।

वुड कोर: बांस और लकड़ी <mark>को इसकी मजबूती बढाने के</mark> उपचार हेतु सीएसआईआर-एनईआईएसटी द्वारा जैव सूत्रण का विकास किया गया है।

2014-15

जीवाण्विक विविधता को निम्नीकृत करने वाला कच्चा तेल एवं स्यूडोमोनस ऐरूजिनोसा स्ट्रेन 002 को निम्नीकृत करने वाले कच्चे तेल का पूर्ण जीनोम विश्लेषण

सीएसआईआर-एनईआईएसटी ने असम के कच्चे तेल से संदूषित मृदा से पृथक बैक्टीरिया की पहचान की है तथा प्रभावी संघ का विकास किया है। पोषक अनुपूरकों सिंदत बैक्टीरिया को निम्नीकृत करने वाले कच्चे तेल के संयुक्त उपयोग व्यापक स्तर पर निम्नीकृत मृदा का पुनरूद्धान करने वाला पाया है। कच्चे तेल के निम्नीकरण हेतु सम्पूर्ण जीनोमिकी एवं लक्षणों का विश्लेषण एवं मूल्यांकन किया गया है। स्ट्रेन पी. ऐरूजिनोसा एन002 के पूर्ण जीनोम की सीक्वेंसिंग की गई, 21 विभिन्न श्रेणियां पाई गईं। कोशिका आण्विक जीवविज्ञान हेतु उत्तरदायी जीन बाहुल्य की बैक्टीरिया को निम्नीकृत करने वाले अन्य कच्चे तेल से तुलना की गई और पाया कि 345 जींस सिंगल ट्रांस्डक्शन में, 173 दो घटक प्रणाली श्रेणियों में सिम्मिलत हैं। संभावित क्षैतिज मूल वाले 40 जीनोमिक द्वीप की भविष्यवाणी की गई, एन002 जीनोम कुछ अंतर्वेश सीक्वेंसेस, 85 ट्रांस्क्रिप्शन जीन्स, 13 ट्रांस्पोर्टर्स, 4 मेटल ट्रांस्पोर्टर्स, 5 मल्टी ड्रग प्रतिरोधी सुपर फेमिली, 2 बायोसफेंक्टेंट रेगूलेटरी जींस, विभिन्न कोशिका गतिशीलता एवं कीमोटेक्सीस से सज्जित पाया गया है तािक कच्चे तेल का प्रभावी रूप से इस्तेमाल करने के लिए विकृति को सुगम बनाया जा सके।

BiVO4 ठोस विलयनों के प्रतिस्थापी दुर्लभ मृदा में दुगुने मॉलीब्डेट में पीत रंगों को प्रतिबिंबित करने वाले उत्कृष्ट आई आर

सीएसआईआर-एनईआईएसटी ने $BiVO_4$ ठोस विलयनों के प्रतिस्थापी दुर्लभ मृदा में दुगुने मॉलीब्डेट में पीत रंगों को प्रतिबिंबित करने वाले उत्कृट आईआर का विकास किया है। $Li_{0.10}$ $RE_{0.10}$ $Bi_{0.8}$ $Mo_{0.2}$ $V_{0.8}$ O_4 (RE=La, Pr, Sm, Gd, Tb, Dy, Y, Yb एवं Lu) रंजकों को परंपरागत ठोसावस्था रिएक्शन रूट द्वारा तैयार किया गया तथा इनके प्रकाशीय, संरचनात्मक एवं आकारकीय गुणों का विश्लेषण किया गया। एक्स-रे विवर्तन विश्लेषण ने इस शृंखला में टेट्रागोनल शीलाइट फेज फॉरमेशन की पृष्टि की।

इन रंजकों में यूवी-ब्लू प्रकाश तरंग देध्य क्षेत्र में प्रबल प्रकाशीय अवशोषण क्षमता है। सीआईई लेब कलर विश्लेषण ने पीत शेड्स के विविध रंग दर्शाए। रंजक विशेषताएं वाणिज्यिक BiVO₄ रंजक के समान थी। BiVO₄ में La, Gd, Tb, Y, Yb एवं Lu के दुर्लभ मृदा मॉलीब्डेट के समावेशन के परिणामस्वरूप अविषाक्त आईआर शीत रंजकों को प्रतिबिंबित करते हैं। विकसित रंजक की उपयुक्तता का कंक्रीट सीमेंट सतह तथा धातु पैनल पर परीक्षण किया गया। इन रंजकों में न्यून विषाक्तता तत्व सम्मिलित हैं जो इन्हें भवनों एवं ऑटोमोटिब्स हेतु ऊर्जा बचत करने वाली सतह कोटिंग सूत्रणों हेतु अनुकूल बनाते हैं।

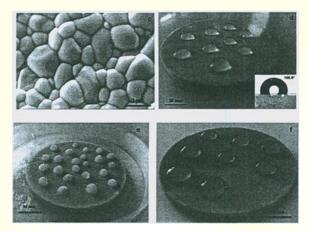
मोनोक्लीनिक $La~Ga_{1-x}Mn_xG_{e2}O_7$: दीर्घ एपिकल बांड लैंथ्स सहित त्रिकोणीय द्वि-पिरामिडीय समन्वयन में Mn^{3+} पर आधारित नया नीला क्रोमोफोर

सीएसआईआर-एनआईआईएसटी ने ठोसावसावस्था प्रतिक्रिया विधि के माध्यम से नए नीले अकार्बनिक ऑक्साइड पदार्थ $La\ Ga_{1-x}Mn_xGe_2O_7$ का विकास किया है। $LaGaGe_2O_7$ में Mn^{3+} का प्रतिस्थापन श्वेत रंग (x=0) को नीले रंग (x=0.1-0.4) में परिवर्तित करता है। नीले रंग को 1.7-2.5eV के ऊर्जा क्षेत्र में अवशोषण का कारण है। को VV-vis स्पेक्ट्रोमीटर के इस्तेमाल से मापा गया। Mn^{3+} धारण करने वाले रंजकों की रंजक निष्पादकता इसके समन्वयन पर्यावरण पर निर्भर करती है। अनडोप्ड $LaGaG_{e2}O_7$ का बैंड अंतराल 3.3eV की सीमा में होता है। जब Mn^{3+} को $LaGaGe_2O_7$ के गैलियम स्थल में लगाया गया तो सभी डोप्ड नमूनों में दो नए अवशोषण बैंड देखे गए। अक्सर टीबीपी स्थल में Mn^{3+} अवशोषण स्पेक्ट्रा $1.7\ eV$ क्षेत्र में सघन अवशोषण बैंड तथा लगभग $2.1\ eV$ का एक अशक्त क्षेत्र प्रदान करता है। यह प्रस्ताव था कि $La\ Ga_{1-x}Mn_xG_{e2}O_7$ (x=0.1-0.4) में दीर्घ Mn-O एपिकल बांड लैंथ की उपस्थिति के कारण यह प्रभाव पड़ता है।

ठंडी छत एवं सतह कोटिंग अनुप्रयोगों हेतु उच्च एनआईआर परावर्तकता सहित टर्बियम-डोप्ड टरियम सीरेट पर आधारित रंजक

सीएसआईआर-एनआईआईएसटी ने किसी विषाक्त धातु आयनों यथा केडिमयम, लीड, कोबाल्ट इत्यादि के बिना $Y_2Ce_{2-x}O_7$ के सीरियम स्थल में टिबियम आयनों के प्रतिस्थापन द्वारा क्यूविक टिरियम सीरेट संवर्धित लगभग इंफ्रारेड (एनआईआर) परावर्तकता सिंहत तीव्र लाल रंजकों की नई श्रेणी विकसित है। स्टोइकिओमीट्रिक संयोजनों: $Y_2Ce_{2-x}Tb_xO_7$ (x=0,0.2,0.4,0.6,0.8 एवं 1.0) के रंजकों का परंपरागत ठोसावस्था रूट

2014-15


द्वारा संश्लेषण किया गया। Tb प्रतिस्थापन वेलेंस बैंड एवं कंडक्शन बैंड के बीच अतिरिक्त इलेक्ट्रॉनिक लेवल प्रारंभ करके दीर्घ तरंग दैध्यों को अवशोषण तीव्रता प्रदान करता है तथा $3.11 \, eV$ (सफेद) से $1.87 \, eV$ (लाल) तक के बैंड अंतराल की फाइन ट्यूनिंग द्वारा विभिन्न लाल रंगों को दर्शाता है। सीमेंट स्लैब और सिरामिक ग्लेजेज में इन रंजकों के उपयुक्तता अध्ययनों ने लगभग उच्च इंफ्रारेड परावर्तकता सहित बेहतर रंजक निष्पादकता दर्शाई। इन रंजकों के रंग गुणों की तुलना में उच्च एनआरआई परावर्तकता (80%) का प्रदर्शन इन्हें ठंडी छत एवं सतह कोटिंग अनुप्रयोगों हेतु संभाव्य एनआईआर परावर्तकता रंग रंजकों के रूप में बनाते हैं।

जैव निम्नीकरणीय \mathbf{ZnO} जीलेटिन हाइब्रिड्स: उदीयमान हरित पैकिंग सामग्री

जीलेटिन परंपरागत तौर पर अपने उत्कृष्ट जैव अनुकूलता और जैव निम्नीकरणीयता के लिए प्रसिद्ध नवीकरणीय जैव बहुलक है। इसके कमजोर जीवाण्विक/कवक रोधी/मिकेनिकल गुण तथा मूलभूत हाइड्रोफिलिक प्रकृति औद्योगिक शक्यता को सीमित करते हैं। सीएसआईआर-एनआईआईएसटी ने कार्यात्मक तौर पर इंजीनियर्ड जीलेटिन जैव तैयार किया है जो सूजन, जीवाण्विक एवं कवक आक्रमण के विरुद्ध उत्कृष्ट प्रतिरोध दर्शाता है। जीलेटिन मैट्रिक्स में साइलेन आशोधित ZnO नैनो स्ट्रक्चर का समावेशन जैव निम्नीकरणीय आर्द्रता प्रतिकर्षी ZnO जीलेटिन बायोहाइब्रिड प्रस्तुत करता है जो बदले में मिकेनिकल नम्यता प्रदान करता है जिसके परिणामस्वरूप पर्यावरणीय असुरक्षित पालीएथीलीन बहुलक पैकिंग सामग्री से मुक्त कराने के लिए नई हिरत पैकिंग सामग्री प्राप्त होती है।

जल एवं गलित धातुओं हेतु सुखी सतहों के लिए लैंथेनम फॉस्फेट (LaPO4) कोटिंग्स एवं मोनोलिश्स

सामान्यत: धातु एवं ऑक्सीजन से बनी सिरामिक धातुऐं गैस/तरल अंतरापृष्ठ पर संभव सहक्रियात्मक हाइड्रोजन बांडिंग अंतक्रियाओं की अधिक व्यवहार्यता के कारण जल अणुओं के लिए अत्यधिक आर्द्रता को दर्शान के लिए जानी जाती हैं। सीएसआईआर-एनआईआईएसटी ने दर्शाया है कि दुर्लभ मृदा सामग्री (REPs), विशेष तौर पर $LaPO_4$ के फॉस्फेट्स किसी रसायन आशोधन के बिना महत्वपूर्ण हाइड्रोफोबिसिटी सिहत वास्तविक गुणों के अद्वितीय संयोजन दर्शाता है जिन्हें अत्यधिक तापमानों और कड़ी हाइड्राथर्मल स्थितियों का सामना करने के बाद भी बनाए रखा जा सकता है। $LaPO_4$ की पारदर्शी क्षीण फिल्में तथा कांच की सतहों पर अन्य आरईपी के मिश्रण को $115-120^\circ$ वाटर कॉन्टेक्ट एंगल (डब्ल्यूसीए) मानों सिहत महत्वपूर्ण हाइड्रोफोबिसिटी का प्रदर्शन करने के लिए दर्शाए गए थे जबिक सिंटरित एवं पॉलिश किए हुए मोनोलिथ्स 105 से अधिक डब्ल्यूसीए प्रदर्शित किए। कोटिंग्स एवं मोनोलिथ्स के रूप में इन सामग्रियों को गलन धातुएं यथा Ag, Zn एवं Al अपने गलन बिन्दुओं से काफी अधिक के लिए पूर्ण सुखापन एवं निष्क्रियता दर्शाई। इन गुणों को इनके उत्कृष्ट रसायन एवं थर्मल स्थिरता को जोड़ने पर प्रक्रमण एवं मिकेनेबिलिटी का सरलीकरण एवं इनके परिवर्तनशील फोटो भौतिकी एवं उत्सर्जन गूण $LaPO_4$ तथा अन्य आरईपी सिरामिकों को विविध अनुप्रयोगों के लिए उपयोगी बनाते हैं।

चित्र: 1.18 सिंटरित लेंथेनम फॉस्फेट <mark>सिरामिक्स, हाइ</mark>ड्रोफोबिक एवं आइसफोबिक गुणों को दर्शाने वाले LaPO₄ सतहों <mark>के फोटो</mark>ग्राफ और LaPO₄ की उच्च स्थिरता दर्शाने वाली अति हाइड्रो थर्मल स्थितियों के बाद की सतहें

2014-15

1.2.2 विकसित प्रौद्योगिकी

चर्मशोधशाला के अपशिष्ट से उच्च ग्रेड का जीलेटिन निर्मित करने हेतु प्रौद्योगिकी

चर्मशोधशाला के अपशिष्ट को यदि ऐसे ही छोड़ दिया जाए तो पर्यावरण पर इसका भयानक प्रभाव पड़ सकता है। सीएसआईआर-सीएलआरआई ने ऐसी प्रौद्योगिकी विकसित की है जिससे चर्मशोधशाला के अपशिष्ट से उच्च ग्रेड का जीलेटिन निर्मित किया जा सकता है। जीलेटिन का फार्मास्यूटिकल एवं खाद्य उद्योगों में व्यापक उपयोग होता है। प्राय: यह पशुओं की हड्डियों एवं सुअर की खाल से अलग किए गए कॉलेजन से बनाया जाता है। सीएसआईआर-सीएलआरआई की नई प्रौद्योगिकी से वैज्ञानिकों ने त्वचा एवं खाल के अवशेषों से कॉलेजन प्रोटीन से जीलेटिन सफलतापूर्वक तैयार किया है। औद्योगिक जीलेटिन तैयार करने के लिए चर्मशोधशालाओं के ठोस अपशिष्ट को संसाधित किया जाता है एवं कई घंटों पकाया जाता है। तथापि, इस प्रक्रिया से कम कीमत वाला जीलेटिन प्राप्त होता है। सीएसआईआर-सीएलआरआई के वैज्ञानिकों ने कैप्सूल बनाने के लिए अपेक्षित अधिक मजबूत जैल का जीलेटिन प्राप्त करने के लिए नियंत्रित ढंग में इसे हाइड्रोलाइज अथवा प्रक्रमित किया। चमड़ा उत्पादन के लिए प्रक्रमित एक टन पशु खाल से 50 किया. अपशिष्ट निकलेगा जिससे 10 किया. जीलेटिन प्राप्त किया जा सकता है। यह संस्थान इस प्रौद्योगिकी को पेटेंट कराने की प्रक्रिया में है जो जीलेटिन बनानेके लिए सफल विकल्प हो सकती है।

बहु-उपयोगिता वाले एंजाइम के उत्पादन हेतु प्रौद्योगिकी

बहु-उपयोगिता वाले एंजाइम के उत्पादन हेतु सीएसआईआर-आईएचबीटी द्वारा खोजी गई प्रौद्योगिकी मेसर्स फाइटो बायोटेक, कोलकाता को हस्तांतिरत की गई है। बर्फीली चादर के तहत उगने वाला पोटेंटिला एस्ट्रों से जीनिया पादप से पिश्चमी हिमालय क्षेत्र में 10, 000 फुट से अधिक ऊँचाई पर सर्वेक्षण के दौरान खोजे गए सुपर ऑक्साइड डिस्म्यूटेज (एसओडी) एंजाइम का उपयोग बुढ़ापा-रोधी क्रीमों, फलों एवं सिंब्जयों की निधानी आयु बढ़ाने और क्रयो-सर्जरी के दौरान एवं ऑगेंनेलेस के संरक्षण में किया जाता है। इसके उच्च ऑक्सीकारक रोधी गुणों एवं बहु उपयोगों के कारण एसओडी की भारी मांग है और इसलिए वैश्विक बाजार में अधिक महंगा है। ई.कोली में इस जीन का क्लोन तैयार करने के लिए प्रॉटोकॉल तैयार किया गया है तथा इसके गाढेपन एवं धर्मो-स्थिरता को बढ़ाने के लिए एकल एमिनो एसिड के म्यूटेशन द्वारा आगे और डिजाइन बनाया गया। एसओडी सब-जीरो से 40 डिग्री सेंटीग्रेड से अधिक के तापमानों की व्यापक सीमा में अत्यधिक स्थिर एवं कार्यात्मक रहता है।

सब्जी एवम् खाद्य अपशिष्ट से बायोगैस

सीएसआईआर-आईआईसीटी ने कार्बनिक अपशिष्ट से बायोगैस प्रणाली विकसित की है जिसमें विभिन्न भागों से महत्वपूर्ण रूचि ली गई है। पेटेंटित हरित प्रौद्योगिकी फीड स्टॉक के रूप में सब्जी एवं फल अपशिष्ट के उपयोग से 120-150 क्यूबिक मीटर बायोगैस (एलपीजी के लगभग 10 कि.ग्रा.के बराबर) सृजित करने में सक्षम है। इस प्रक्रिया के दौरान बेहतर गुणवता वाला कार्बनिक खाद भी सृजित होता है। सीएसआईआर-आईआईसीटी वर्तमान में 2-5 टन क्षमता की ऐसी प्रणालियां सृजित करने पर कार्य कर रहा है जो बायोगैस एवं कार्बनिक खाद की अधिकतर मात्रा उपलब्ध कराने के लिए सज्जित हों। इकाईयां तिरूमाला तिरूपित देवस्थानक (टीटीडी) और न्यू एनर्जी डिवलपमेंट कॉपॉरेशन ऑव आन्ध्र प्रदेश (Nedcap) (राज्य की 20 नगर पालिकाओं में पांच टन क्षमता वाली एजीआर प्रणालियां) स्थापित की जा रही हैं।

रसायन उद्योग हेत् हाइड्रेजिन हाइड्रेट्स के उत्पादन हेत् प्रौद्योगिकी

सीएसआईआर-आईआईसीटी ने हाइड्रेजीन हाइड्रेट का उत्पादन करने के लिए प्रौद्योगिकी विकसित की है। इस प्रौद्योगिकी का प्रायोगिक स्तर पर मेसर्स गुजरात एल्केलाइज एंड केमिकल्स लि., वडोडरा (जीएसीएल) में सफलतापूर्वक प्रदर्शन किया गया। हाइड्रेजीन हाइड्रेट का अनेक औद्योगिक रसायनों के विरचन यथा रंजकों के लिए अनेक कार्बनिक पिग्मेंट्स में, फोटोग्राफी हेतु अभिक्रर्मक के रूप में, थर्मल एवं न्यूक्लियर संयंत्रों के वाटर सर्किट्स में संक्षारण रोधी योगज, औद्योगिक बॉयलर्स और हाई प्रैशर स्टीम जनरेटर्स के जल में ऑक्सीजन स्केवंजर, कीमती धातुओं की रिफाइनिंग, पिकलिंग से धातुओं की प्राप्ति और सतह उपचार समाधानों तथा तरल एवं गैस अपशिष्टों के उपचार में उपयोग होता है। चूंकि सीएसआईआर-आईआईसीटी द्वारा विकसित यह प्रक्रम हाइड्रोजन परॉक्साइड पर आधारित है, यह पर्यावरण एवं सिक्रय स्थितियों पर प्रदूषकों के प्रतिकूल प्रभाव को कम करता है। सीएसआईआर-आईआईसीटी ने हाइड्रेजीन हाइड्रेट प्रौद्योगिकी के विकासार्थ जीएसीएल के साथ करार पर हस्ताक्षर किए हैं। प्रारंभ में जीएसीएल सीएसआईआर-आईआईसीटी की प्रौद्योगिकी पर आधारित 80 प्रतिशत हाइड्रेजीन हाइड्रेट का 8,000 टीपीए वाणिज्यिक संयंत्र की शीघ्र स्थापना करेगा।

2014-15

रसायन उद्योग हेतु नैनो-उत्प्रेरक

सीएसआईआर-आईआईपी ने अनेक चुनौती पूर्ण उत्प्रेरक प्रतिक्रियाओं के लिए उपयोगी नैनो स्ट्रक्चर्ड मैटिरियल्स (नैनो-उत्प्रेरकों) के संश्लेषण एवम् उत्पादन हेतु ऊर्जा दक्ष रणनीतियां विकसित कर रहा है। सीएसआईआर-आईआईसीटी में विकसित नैनो उत्प्रेरक प्रोपीलीन से प्रोपीलीन ऑक्साइड (पीओ) के चयनात्मक ऑक्सीकरण में न्यूनतम अपशिष्ट सृजन आर्थिक रूप से व्यवहार्य एवं पर्यावरण-हितैषी साधनों में सहायता देता है। प्रोपीलीन ऑक्साइड सामग्री रसायनों यथा पॉलीयूरेथीन फॉम्स, प्रॉपीलीन ग्लाइकोल, पॉली प्रोपीलीन ग्लाइकॉल, प्रोपीलीन कार्बोनेट आदि के विरचन में महत्वपूर्ण संक्षिष्ट अंत: मध्यस्थ के रूप में उपयोग में लाया जाता है, वर्तमान में इसका उत्पादन 10 मिलियन टन प्रतिवर्ष से अधिक है।

1, 2-पीडीओ के उत्पादन हेतु प्रक्रम

सीएसआईआर-आईआईपी द्वारा ग्लाइसरोल से 1, 2-प्रोपेन-डाई-ओल के उत्पादन हेतु प्रायोगिक संयंत्र स्तर का प्रक्रम विकसित किया गया है। मूल्य अभिवृद्धि वाले उत्पादों के लिए उत्प्रेरक प्रक्रमों द्वारा ग्लाइसरोल के रूपांतरण को बायो डीजल के उत्पादन के उप-उत्पाद के रूप में ग्लाइसरोल की उपलब्धता में वृद्धि तथा संधारणीय प्रक्रमों का विकास करने के लिए बढ़ती चिंता के कारण अत्यधिक प्रोत्साहन दिया जा रहा है। ग्लाइसरोल रूपांतरण हेतु विभिन्न विकल्पों में इसके उत्प्रेरक हाइड्राजीनोलाइसिस से 1, 2-प्रोपेन डाइओल (1, 2-पीडीओ) वाणिज्यिक दृष्टिकोण से अत्यधिक आकर्षक विकल्प है। 1, 2-पीडीओ असंतृप्त पॉलीएस्टर रेजिन्स, फंक्शनल फ्लूईड्स (एंटी-फ्रीज, डी-आइसिंग एवं हीट ट्रांस्फर), खाद्यों, कॉरमेटिक्स, फार्मास्यूटिकल्स, लिक्विड डिटर्जेंट्स, स्वाद एवं सुस्वाद, तम्बाकू ह्यूमेक्टेंट्स, पेन्ट्स इत्यादि में उपयोग में लाए जाने वाला कॉमोडिटी केमिकल है।

1.3 इंजीनियरी विज्ञान

1.3.1 वैज्ञानिक उत्कृष्ट<mark>ता</mark>

उन्नत संक्षिष्ट परिरक्षण संधातों के इस्तेमाल से किरणन परिरक्षण कंक्रीट मिश्रण तैयार करना

परंपरागत रूप से परिरक्षण कंक्रीट लोह धातु शॉट्स, हेमाटाइट अयस्क एवं सीमेंट इत्यादि के ही वास्तविक मिश्रण पर आधारित होती हैं। इसके अतिरिक्त, इन घटकों की सघनताओं में व्यापक अंतरों के लिए सदृश परिरक्षण मैटिक्स प्राप्त करने के लिए विशेष देखरेख की आवश्यकता होती है। सीएसआईआर-एएमपीआरआई द्वारा एल्यूमिनियम उद्योग अपशिष्ट अर्थात लाल गाद के सिरामिक प्रसंस्करण के माध्यम से उन्नत "रसायिनक तौर पर तैयार की गई — बहु घटक-बहु चरण युक्त" संक्षिष्ट उच्च सघनता परिरक्षण संधातों का विकास किया गया है।

उपयुक्त योगजों सिहत लाल गाद का सिरामिक प्रक्रमण की किस्मों के बहु तत्वीय संयोजनों एवं बहु परतीय क्रिस्टल संरचनाएं नामशः बैरियम एल्यूमिनेट्स जो सेल्शियन कहलाता है एवं ट्राइगोनेल बाइपाइरेमिडल क्रिस्टल संरचना सिहत हेक्सागोनल युक्त बेरियम, लौह, टाइटेनियम के सिलिकेट्स नामशः वैफर टाइसाइट के निर्माण में समर्थ बनाता है। लाल गाद अपशिष्ट में तत्वों किस्में नामशः लौह, टाइटेनियम, एल्यूमिनियम, सिलिकॉन, कैल्शियम, मैग्नीशियम एवं सोडियम आदि अंतर्निहित रूप में सिम्मिलित होते हैं तथा इस प्रकार लाल गाद अपशिष्ट को परिरक्षण संघातों युक्त बहु चरणों का विकास करने के लिए अत्यधिक उपयुक्त बहु-घटक संसाधन पदार्थ बनाते हैं। इसके अतिरिक्त लाल गाद में ये बहु अवयव क्रमशः आक्साइड, ऑक्सी-हाइड्रॉक्साइड एवं हाइड्रॉक्साइड्स, न्यून तथा उच्च आण्विक संख्या वाले घटक नामशः सोडियम, लौह यौगिक तथा अविषाक्त प्रकृति के रूप में उपस्थित रहते हैं।

चित्र: 1:19 उच्च सघनता वाले संक्षिष्ट परिरक्षण संघात बनाने के लिए लाल गांद का सिरामिक प्रसंस्करण

2014-15

विकसित कंक्रीट ने लक्ष्य मानदं<mark>ड यथा एम-30</mark> की डिजाइन कम्प्रेसिव स्ट्रेंथ प्राप्त की, 28, 56, 112 एवं 224 दिनों के बाद निर्धारित समयाविध में कम्प्रेसिव स्ट्रेंथ के टिकाऊपन हेत् परीक्षण मूल्यांकन किया गया तथा कंक्रीट को टिकाऊ पाया गया।

भाभा आण्विक अनुसंधान केन्द्र द्वारा ¹³⁷Cs, ²⁴¹Am एवं 300 KV एक्स-रेज के लिए क्षीणता घटक हेतु विकिरण परिरक्षण विशेषताओं हेतु नमूनों की जांच की गई। विकसित कंक्रीट ने ¹³⁷Cs हेमाटाइट अयस्क कंक्रीट हेतु 5.1 मान की तुलना में 5.8 का परिरक्षण क्षीणतर घटक, उच्च ऊर्जा गामा विकिरण स्रोत प्राप्त किया।

किरणन परिरक्षण कंक्रीट स्लैब नमूने							
(बीएआरसी, मुम्बई में जांच की गई)							
क्रम सं.	नमूना विवरण	आयाम (सेमी.)	सघनता (किग्रा/मी ³)	ऊर्जा 662 KeV पर गामा क्षीणता घटक (सेल्सियम 137 स्त्रोत ¹³⁷ Cs का उपयोग करते हुए)	डिजिटल एक्स-रे (300 केवी) प्रकटन		
1.	बासाल्टिक एग्रीगेट कंक्रीट (बीसीसी-1)	30X30X7.2	2570	3.21			
2.	हेमाटाइट अयस्क आधारित कंक्रीट (एचएससी-1)	30X30X7.2	3640	5.10			
3.	लाल गाद आधारित संश्विष्ट एग्रीगेट सीमेंट (एचएएस-7)	30x30x7.2	3586	5.80			

मुख्य विशेषताएं:

किरणन परिरक्षण कंक्रीट बनाने के लिए विकसित लाल गाद आधारित संश्विष्ट परिरक्षण संधात परंपरागत हेमाटाइट अयस्क संधातों का स्थान ले सकते हैं;

परमाणु ऊर्जा संयंत्रों में अनुप्रयोगार्थ विकसित मिक्स डिजाइन परंपरागत हेमाटाइट अयस्क कंक्रीट की तुलना में उन्नत इंजीनियरी एवं विकिरणन क्षीणता गुण युक्त होता है; और

उन्नत परिरक्षण संधातों का नि<mark>र्माण करने के लिए</mark> एल्केलाइन लाल गाद अपशिष्ट का विशाल मात्रा में उपयोग परंपरागत विकिरण परिरक्षण कंक्रीट तैयार करने में अपेक्षित आपूर्तित हेमाटाइट अयस्क प्राकृतिक संसाधन का संरक्षण करने में सहायता देगा।

सेल्फ-हीलिंग मैटिरियल के रूप में बायो-कंक्रीट

सीएसआईआर-सीबीआरआई ने सेल्फ हीलिंग मैटिरियल के रूप में बायो-कंक्रीट का विकास किया है। इसके लिए दो नए कैल्सिफाइंग बैक्टीरिया की पहचान की गई तथा आगे प्रयोग करने के लिए प्रयोगशाला में अनुरक्षण किया गया। लिक्विड कल्चर मीडिया में बैक्टीरिया का विकास करके बैक्टीरियल पैलेट्स भी तैयार किए गए हैं। बैक्टीरिया कल्चर के ओडी का रेफ्रिजरेटिड सेंट्रीफ्यूज पर अपकेन्द्रण के बाद यूवी-स्पेक्ट्रो फोटो मीटर के उपयोग से निर्धारण किया गया तािक बैक्टीरियल मीर्टर में कास्ट करने के लिए उपयोग में लाए जाने हेतु इनके संकेंद्रित बैक्टीरियल पैलेट्स प्राप्त किए जा सके। अगले चरण

2014-15

में मानक साइज क्रेक सिंहत बैक्टीरिया अंत:स्थापित मार्टर क्यूब्स (50mm) बैक्टीरियल पैलेट के इस्तेमाल से कास्ट किए गए। विभिन्न आवर्धनों से स्केनिंग कर इलेक्ट्रॉन माइक्रोस्कॉप द्वारा मोर्टर नमूनों की जांच की गई। रॉड-आकार के बैक्टीरिया एवं कैल्साइट के क्रिस्टल बैक्टीरिया उपचारित मोर्टर में स्पष्ट दिखाई देते हैं। नमूनों की ईडीए एक्स द्वारा जांच की गई जिसने 8.90% (अनुपचारित) से 44.04% (बैक्टीरिया सिंहत) और 68.88% (बैक्टीरिया एवं कैल्शियम लैक्टेट सिंहत) कैल्शियम आयन सान्द्रण का संवर्धन दर्शाया। निर्मित खनिज संयोजन के रूप का पता लगाने के लिए एक्सआरडी विश्लेषण किया गया। बैक्टीरियल मोर्टर ने दर्शाया कि कार्बोनेट निक्षेपों बहुलता कैल्साइट के रूप में मौजूद थे जबिक कोई कैल्साइट पीक्स अनुपचारित नमूनों में दिखाई नहीं दिए।

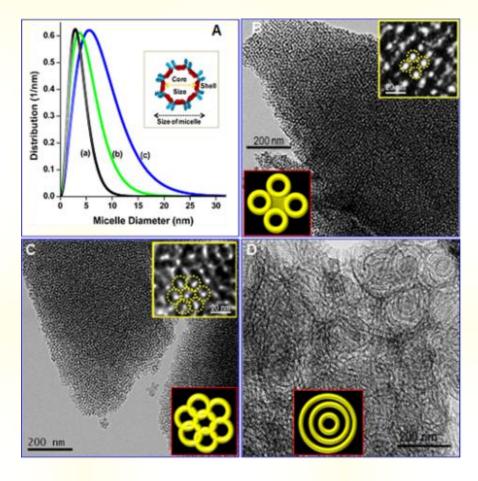
ठंडी जलवायु वाले क्षेत्र हेतु सोलर विंडो प्रणाली

सीएसआईआर-सीबीआरआई द्वारा ठंडी जलवायु वाले क्षेत्र के लिए सोलर विंडों प्रणाली का डिजाइन एवं विकास किया गया है। इसे विंडो ग्लास के बिल्कुल पीछे रखा जाता है। इस प्रणाली की कमरे के भीतर रोशनी के दृष्टिकोण से अध्ययन किया गया है। कमरे के फ्लोर क्षेत्र के 10% क्षेत्र को खुला रखने से रोशनी संतोषजनक बनी रहती है। यह इंडोर एयर टेम्प्रेचर में सुधार करता है। 7.5° सेल्सियस के अधिकतम इंडोर एयर तापमान अंतर को कमरे में प्राप्त किया जा सका।

चित्र: 1.20 सीएसआईआर-सीबीआरआई द्वारा ठंडी जलवायु वाले क्षेत्र के लिए सोलर विंडो प्रणाली

फ्लूओरो जिप्सम से सीमेंट-मुक्त प्लास्टर विकसित

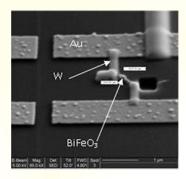
सीएसआईआर-सीबीआरआई ने बाह्य एवं आंतिरिक सतहों, चिनाई के कार्यों, हल्के वजन के जिप्सम ब्लॉक एवं प्रीफेब्रिकेटिड पैनल्स में उपयोग करने के लिए फ्लूओरो जिप्सम से ऊर्जा दक्ष, सस्ते, अधिक मजबूत, सीमेंट मुक्त प्लास्टर का विकास किया है। फ्लूओरोजिप्सम, हाइड्रो फ्लूओरिक एसिड उद्योग का उप-उत्पाद, जिप्सम के एनहाइड्राइट रूप में उपलब्ध है। यह संरचना में Ca^{2+} एवं SO_4^{2-} आयनों की गाढ़ी पैकिंग के कारण सैट और सखत नहीं होता है। अत: रसायन सिक्रयकों का उपयोग करके इसके हाइड्रेशन बीहेवीयर को सिक्रय करना अनिवार्य है। एल्काली/एल्केलाइन अर्थ्स के सल्फेट्सयुक्त रसायन सिक्रयकों से उपयुक्त उपचार एवं फ्लूओरो जिप्सम के सिक्रयण के बाद तेजी से सैट होने, कम पानी अवशोषण करने एवं रन्ध्रता वाली अधिक मजबूती वाली जिप्सम सीमेंट, निर्मित की गई है। इस सामग्री के गुण ASTM C-61-50 की आवश्यकताओं के अनुरूप है। जिप्सम सीमेंट के बेहतर विकास के लिए जिम्मेवार चरणों का विभेदक ताप विश्लेषण (डीटीए) और स्केनिंग इलेक्ट्रॉन माइक्रोस्कॉप (एसईएम) द्वारा अध्ययन किया गया। जिप्सम सीमेंट प्लास्टर करने, हल्के-वजन वाले ब्लॉकों एवं प्रीफेब्रिकेटिड पैनल्स में उपयोगार्थ उपयुक्त पाया गया है। चूंकि निर्माण उद्योग स्रोत सामग्री अर्थात रेत की कमी का सामना कर रहा है, रेत को स्टोन डस्ट एवं उड़न राख से बदलने के लिए तुलनात्मक अध्ययन किया गया है।

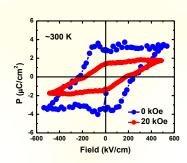

रंघ्र संरचना को ऐलूमीना पूर्व<mark>गामी के स्वकल्पन द्वारा</mark> क्रमित मेसोपोरस ऐलूमिना फिल्म्स <mark>के अनुकूल बनाना</mark>

मेसोपोरस ऐलूमिना उत्प्रेरक और होस्ट मैटिरियल के रूप में अपने संभाव्य अनुप्रयोगों के कारण अत्यधिक महत्वपूर्ण सामग्री है। प्राय: मेसोपोरस मैटिरियल्स वाष्पीकरण-उत्प्रेरित सेल्फ असेम्बली तकनीक द्वारा सोफ्ट टेम्प्लेटिंग विधि द्वारा संक्षिष्ट की जाती है। तथापि, तापीय रूप से स्थिर क्रमित मेसोपोरस ऐलूमिना फिल्म्स का संश्लेषण व्यापक वातावरण में Al- एक्लॉक्साइड पूर्वगामी के तीव्र हाइड्रोलाइसिस के कारण चुनौती पूर्ण कार्य बना हुआ था। उडी मेसोपोरस सिलिका (यथा Pm3m, 1m3m, Fm3m एवं la3d), में la3d सीमीट्रीसहित मेसोपोरस जैव अणुओं के लिए बेहतर होस्ट है और उत्प्रेरक के तौर पर अधिक सिक्रय है। स्थिर ऑनियन-जैसे मेसोपोरस सिलिका एंजाइम निसंचालन हेतु दक्ष होस्टस के रूप में उपयोग किया गया है।

2014-15

तथापि, ऐलूमिना फिल्म्स में ऐसी सीमीट्रीज की प्राप्ति इसके अनुप्रयोग की दृष्टि से महत्वपूर्ण है। सीएसआईआर-सीजीसीआरआई ने सरल एवं आर्थिक रूप से सस्ती सोल-जैल विधि के द्वारा 1m3m, la3d और लैमेलैर (ऑनियन जैसे) युक्त क्रमिक मेसोपोरस ऐलूमिना फिल्म्स का पहली बार संश्लेषण किया है। मन्द समयावधि-उत्प्रेरित स्वकल्पन रूपरेखा का पी123 ब्लॉक सह बहुलक सरफेक्टेंट के इस्तेमाल से रन्ध्र-संरचना के अनुकूलन बनाने के लिए आंशिक तौर पर एसीटाइल-एसीटोन चीलेटेड एलूमिनियम एल्कॉक्साइड्स (ASB-acac) उन्नत रूप में उपयोग किया गया है। विभिन्न काल के ASB-acac के इस्तेमाल से मिसलेर असेम्बली को ऐलूमिना फिल्म्स की रन्ध्र-संरचना के अनुकूल संचालित किया गया है। एफटीआईआर ने समय के साथ पूर्वगामी स्वकल्पन की पुष्टि की है जबिक ट्रांस्मीशन एसएएक्सएस अध्ययनों ने विभिन्न काल के ASB-acac का उपयोग किए जाने पर मिसलेर आयाम में परिवर्तन का खुलासा किया। ऐसे मिसलेर रूपांतरण एवं 1m3m, la3d एवं ओनियन जैसी रन्ध्र व्यवस्था सहित स्थायी मेसोपोरस ऐलूमिना फिल्म्स के निर्माण के बीच सह-सम्बन्ध का न्यून कोण एक्सआरडी एवं टीईएम अध्ययनों द्वारा प्रस्ताव किया गया है। एकल सोल संयोजन से संक्षिष्ट ग्लास पर अलग-अलग रूप से क्रमित मेसापोरस ऐलूमिना फिल्म्स का उत्प्रेरकों अथवा उत्प्रेरक सहायता के रूप में उपयोग किया जा सका।

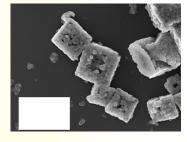

चित्र: 1.21 (क) (अ) 0, (आ) 15 एवं (इ) 30 दिनों के लिए ऐलूमिना पूर्वगामी काल से तैयार मेसोस्ट्रक्चर्ड ऐलूमिना सोल्स में पी 123 मिसेल (इनसेट) का आकार वितरण (ख-घ) (ख) 1m3m, (ग) 1a3d एवं (घ) लैमलेर मेसोपोर को दर्शाने वाली कैल्सीनेड मेसोपोरस ऐलूमिना फिल्म्स का टीईएम चित्र

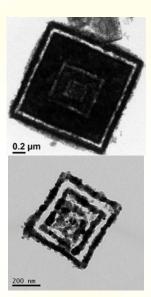


2014-15

सामान्य ताप पर नैनोस्केल BiFeO3 में बृहत्त मैग्नेटो-इलेक्ट्रिक कपलिंग: चार अवस्था वाले मल्टीफेरोईक मेमोरी उपकरण हेतु उपयोगी

BiFeO₃ नैनो स्केल मेमोरी उपकरणों के लिए संभाव्य केंडीडेट है क्योंकि यह सामान्य ताप पर मल्टी फेरोसिटी दर्शाता है। अपनी अत्यधिक न्यून पावर एवं अत्यधिक तीव्र स्विचिंग स्पीड्स के कारण चार अवस्था वाले मल्टीफेरोइक मेमोरीज, जहां डाटा इलेक्ट्रिकल रूप में लिखे जाते हैं एवं मैग्नेटिकली पढ़े जाते हैं, शीघ्र मेमोरी मार्केट में प्रभुत्व बनाने वाला है। सीएसआईआर-सीजीसीआरआई ने BiFeO₃ –ई-बीम लिथोग्राफी द्वारा निर्मित नमूना तथा केन्द्रित आयन बीम पेषण/ निक्षेपण की नैनो चैन को दर्शाया है – फेराइ लेक्ट्रिक ध्रुवण को सामान्य ताप पर ~20 kOe के सीमित चुम्बकीय क्षेत्र के अंतर्गत लगभग 40% तक अवरोध से गुजरता है। नैनोस्केल BiFeO₃ में सामान्य ताप पर यह बृहत मैग्नेटोइलेक्ट्रिक कपलिंग निकट भविष्य में नैनोस्केल मल्टीफेरोइक मेमोरी उपकरणों को प्राप्त करने के लिए अत्यधिक आशा सृजित करती है।




चित्र: 1.22 (बाएं) ई-बीम लिथोग्राफी <mark>और केन्द्रित आयन</mark> बीम पेषण/निक्षेपण द्वारा दो-जांच विन्यास में निर्मित BiFeO₃ की नैनो चैन के एसईएम चित्र, (दाएं) सामान्य ताप पर शून्य एवं ~20 kOe चुम्बकीय क्षेत्र के अंतर्गत मापे गए अवशिष<mark>्ट शैथिल्य विपाश</mark>

माइक्रोकारपेट-जैसे इंटीरियर से घनाकार मेसोपोरस CuO का सोल-जैल प्रक्रमण

सीएसआईआर-सीजीसीआरआई <mark>ने सोफ्ट टेम</mark>्प्लेट्स के रूप में ट्राईब्लॉक सह-बहुलकों के इस्तेमाल से सोल-जैल प्रक्रम द्वारा संश्विष्ट माइक्रोकारपेट जैसे इंटीरियर से धनाकार मेसोपोरस CuO का विकास किया है। मल्टी-शैल पैटर्न वाली संरचनाओं में विषाक्त गैस सीओ, गैस सेंसर्स, सुपरकंडक्टर्स, लिथियम-आयन बैटरीज आदि के अपघटन हेतु संभाव्य उत्प्रेरक अनुप्रयोग हैं।ऐसी सामग्री के विकास का पर्यावरण एवं ऊर्जा क्षेत्रों में अत्यधिक महत्व है।

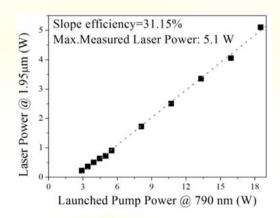
चित्र: 1.23 माइक्रोकारपेट जैसे इंटीरियर सहित घनाकार CuO

2014-15

इस्पात के सतत संचकन हेतु टेबुलर ऐलूमिना से Al2O3-C कार्यात्मक रिफ्रेक्टरी

इस्पात संयंत्रों में कार्यात्मक अनुप्रयोग यथा स्लाइड गेट्स, नोजल्स आदि के लिए ऐलूमिना-कार्बन कम्पोजिट रिफ्रेक्टरीज का परंपरागत तौर पर फ्यूज्ड ऐलूमिना से उत्पादन किया जाता है। ये रेजिन पर आधारित मूल सामग्री यथा फ्यूज्ड ऐलूमिना एवं ग्रेफाइट सिहत रसायनिक तौर पर बंधित उत्पाद हैं। इस किस्म के अनुप्रयोग में मुख्य समस्या घटिया थर्मल शॉक प्रतिरोध एवं न्यूनतम जीवनकाल है। सतत इस्पात संचकन में लैडल श्राउड अत्यधिक असुरिक्षत क्षेत्र है। सीएसआईआर-सीजीसीआरआई ने परंपरागत तौर पर उपयोग में लाए जाने वाले फ्यूज्ड ऐलूमिना से विकसित Al_2O_3 -C रिफ्रेक्टरी के एग्रीगेट टाइप को फ्यूज्ड से सिटरित ग्रेंस से बदल कर श्रेष्ठ थर्मल शॉक गुण से बदलकर टेबूलर ऐलूमिना से श्राउड का विकास किया है। इष्टतम ग्रेनूलो मीट्रिक संयोजन सिहत टेबूलर ऐलूमिना श्राउड के गुण फ्यूज्ड ऐलूमिना श्राउड की तुलना में अधिक बेहतर पाए गए। इन परिणामों को प्रयोगशाला विकास एवं उन्नत उत्पादों के आधार पर प्रामाणिक बनाए गए हैं। श्राउड का आदिप्ररूप भी विकसित किया गया है।

गुण	फ्यूज्ड ऐलूमिना श्राउड	टेबूलर ऐलूमिना श्राउड
स्पष्ट सरन्ध्रता (%)	15.8	18.0
कम्प्रेसिव स्ट्रेंथ (किग्रा/सेमी)	288	499
1200° सं. पर र्धमल शॉक प्रतिरोध (साइक्लस)	6	10

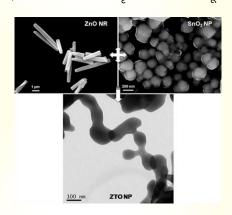


चित्र: 1.24 श्राउड का आदिप्ररूप

सोफ्ट टिश्यू सर्जरी के लिए थिलियम डॉप्ड फाइबर लेजर्स

धिलियम (Tm)- डोप्ड फाइबर लेजर्स को चिकित्सा के विभिन्न क्षेत्रों यथा मूत्र विज्ञान, त्वचा विज्ञान एवं नेत्र विज्ञान में सोफ्ट टिश्यू सर्जरी में हो: याग (Ho:YAG) लेजर्स के बदले उपयोग में लाए जाने की आशा है। सीएसआईआर-सीजीसीआरआई ने Tm-डोप्ड आल-फाइबर सीडब्ल्यू लेजर का डिजाइन किया है तािक मैदान में अनुप्रयोग हेतु अधिक मजबूत, सुसंहत एवं रख रखाव मुक्त खेत में अनुप्रयोग हेतु उपयोगी आकृति प्राप्त की जा सके। 5w से अधिक के आउटपुट वाली पावर सहित 1.95 μm तरंग दैध्य पर प्रयोगशाला में प्रदर्शन किया है। सिक्रिय टिश्यू सेल्स में दाग, झुलसना, अंगच्छेदन पर 1.95 μm पर लेजर पावर के प्रभाव की जांच चिकित्सकों के परामर्श से प्रगतिधीन है।

चित्र:1.25 पैकिंग के तहत 10w Tm-फाइबर लेजर मॉड्यूल का आदिप्ररूप Tm-डॉप्ड फाइबर लेजर का लेजर पावर बनाम लांच्ड 3 पम्प पावर


किरकेंडल प्रभाव के बिना जेडटीओं का चरण निर्माण

सीएसआईआर-सीजीसीआरआई ने नैनो आकार के एक चरणीय संश्लेषण, दोष मुक्त घन स्पाइनल Zn_2SnO_4 हेतु अत्यधिक रूचिकर एवं सरल मार्ग विकसित किया है। यह रंजक संवेदनशील सौर सेल (डीएसएससी) में वैकल्पिक फोटोएनोड के रूप में उपयोग में लाए जाने वाला संभावित केंडीडेट है।

2014-15

हेक्सैगोनल ZnO रॉड्स एवं टेट्रागोनैल SnO_2 कणों के मिश्रण का 1000° से. पर केल्सिनाइड किया गया । Zn_2SnO_4 बनाने के लिए $2ZnO+SnO_2$ की प्रतिक्रिया तापमान मध्यस्थ डिफ्यूजन नियंत्रित ठोसावस्था प्रतिक्रिया के कारण हो सकी । ऐसे आंतरिक-डिफ्यूजन प्रतिक्रियाओं के परिणामस्वरूप दो पदार्थों के अंतरापृष्ठ के बीच अधिक तीव्रता से विसरित होने वाले घटक पर सरन्ध्र परत का निर्माण हो सका । इस अध्ययन में पदार्थ ZnO एवं SnO_2 सरन्ध्र उत्पादों का परिणाम थे । किर्केंडल प्रभाव के रूप में प्रसिद्ध यह तथ्य पदार्थों के ठोसावस्था संश्लेषण में अत्यधिक सामान्य है । रूिकर बात यह है कि Zn_2SnO_4 का चरण निर्माण इस जांच में किर्केंडल प्रभाव के बिना होता है । सूक्ष्म संरचनात्मक जांचों ने नीचे चित्र में दर्शाए गए द्विआधारी ऑक्साइड्स की तुलना में Zn_2SnO_4 के अंतिम उत्पाद की आकृति विज्ञान में महत्वपूर्ण परिवर्तन दर्शाए ।

चित्र: 1.26(क) ZnO रॉड्स <mark>के एसईएम (ख) SnO</mark>2 नैनो कण एवं (ग) 1000° से. पर कैल्सिनाइड मिश्रण <mark>के परिणामस्व</mark>रूप सेल्फ असेम्बल्स ZTO कण के टीईएम

सड़क की सतह की वीडियो क्लिप्स से आपदाओं सहित/रहित फ्रेमों के स्वत: विभाजन हेतु सुदृढ़ विधि

सड़क की स्थित के मूल्यांकन हेतु लिए गए सड़क की सतह के वीडियो क्लिप्स की ऑटोमेटिड प्रसंस्करण कम समय और प्रयासों से सड़क सतह के आपदा की मौजूदगी का पता लगाने के लिए आवश्यक है। सीएसआईआर-सीआरआरआई ने किसी कृत्रिम लाइटिंग प्रणालियों के बिना मौजूदा कैमरा पर आधारित इमेजिंग सिस्टम्स द्वारा ली गई सड़क सतह की वीडियो क्लिप्स से आपदाओं सिहत/रहित फ्रेमों के स्वत: विभाजन हेतु सुदृढ़ विधि प्रस्तुत की है। प्रस्तावित विधि अनुकूली प्रारंभिक तकनीक एवं वीडियों क्लिप्स से सड़क की सतह की आपदाओं का स्वत: पता लगाने के लिए प्रयोक्ता निर्धारित निर्णय तर्क पर आधारित है। यह विधि विजुअल स्टूडियो 2008 एवं ओपन सीवी लाइब्रेरी की सहायता से विंडोज विस्टा इन्वायरन्मेंट में क्रियांवित किया गया है तथा भारतीय राजमार्गों की 31 सड़क सतह की वीडियों क्लिप्स पर परीक्षण किया गया है। परिणाम दर्शाते हैं कि यह विधि सड़क सतह की वीडियों क्लिप्स को स्वत: वीडियो फ्रेम्स की दो श्रेणियों नामश: आपदा सिहत फ्रेम्स एवं आपदा रहित फ्रेम्स में समय और जनशक्ति संसाधनों की महत्वपूर्ण बचत करते हुए 96% तक यथार्थता सिहत विभाजित कर सकती है।

सड़क आपदाओं के स्वत: मूल्यांकन हेतु सुवाह्य सस्ती प्रणाली फ्रेमवर्क

भारत, 4.1 मिलियन से अधिक सड़क नेटवर्क्स सिहत संयुक्त राज्य अमरीका के बाद विश्व में दूसरा सबसे बड़ा सड़क नेटवर्क्ड देश बन गया है। तथापि, मौजूदा सड़क नेटवर्क्स विस्तार अक्सर विकृत होते हैं एवं स्वीकार्य स्तर से नीचे आते हैं। इसके लिए बढ़ते हुए भारतीय यातायात एवं जनसंख्या की देखभाल करना अपेक्षित है। भारतीय दिशा-निर्देशों के अनुसार दरारें, गड़ढे, खंडों और पिट से बनी लिकरें सड़क सतह की कुछ किस्म की आपदाएं हैं जिनका बेहतर एवं प्रभावी सड़क नेटवर्क सुनिश्चित करने के लिए मरम्मत एवं अनुरक्षण रणनीतियां तैयार करने के लिए उनका मूल्यांकन अनिवार्य है। वर्तमान में इन आपदाओं का उनके स्थान, प्रति किमी उपस्थित की संख्या, लम्बाई (मी.), क्षेत्रफल (वर्ग मी.) क्षेत्र की सीमा (%) और/अथवा परंपरागत क्षेत्रीय निरीक्षण तकनीकों अथवा समर्पित सड़क सर्वेक्षण वाहनों के इस्तेमाल से उनकी किस्मों का हाथ से मूल्यांकन किया जाता है। यह अत्यधिक महंगा, अधिक समय लेने वाला एवं सड़क अनुवीक्षण प्रबंधन की गित धीमी करने वाला है। सीएसआईआर-सीआरआरआई का सुवाह्य सस्ती प्रणाली फ्रेमवर्क का प्रस्ताव है जिसमें ऑटोमेटिड सड़क आपदा मूल्यांकन हेतु सर्वत्र उपस्थित यात्री वाहनों, लॉ एंड लैपटॉप, वेबकैम एवं डिजिटल कैमरे का उपयोग होता है। वेबकैम एवं डिजिटल कैमरे से सज्जित प्रस्तावित फ्रेमवर्क के इस्तेमाल से भारतीय राजमागों की रॉ वीडियो क्लिप्स दिन की सामान्य रोशनी की स्थितियों में किसी कृत्रिम प्रकाश प्रणाली के बिना ली जाती हैं। तत्पश्चात एकत्र की गई वीडियो क्लिप्स का सड़क सतह की वीडियो क्लिप्स से गड़ढों का स्वत: पता

2014-15

लगाने एवं मापने के लिए लेखकों द्वारा पूर्व में प्रस्तुत सुदृढ़ एल्गोरिथ्म के इस्तेमाल से संसाधित की जाती हैं। परिणाम दर्शाते हैं कि प्रस्तावित फ्रेमवर्क में गड्ढों का स्वत: और दक्षता से पता लगाने एवं मूल्यांकन करने की अत्यधिक क्षमता है। इस प्रस्तावित फ्रेमवर्क के इस्तेमाल से अलग की गई सूचना भारतीय सड़कों के अनुरक्षण स्तरों का निर्धारण करने के लिए उपयोग में लाई जा सकती है तथा मरम्मत एवं अनुरक्षण संबंध मामलों हेतु अल्प समयाविध में आगे उपयुक्त कार्रवाई की जा सकती है।

लौह-अयस्क सिंटरिंग में माइक्रो फाइंस के प्रभावों संबंधी अध्ययन

सिंटरिंग का लौह परिष्कृत के संकुलन के लिए व्यापक रूप से उपयोग किया जाता है जबिक माइक्रो फाइंस सिंटरिंग प्रक्रिया में स्थायी मार्गावरोध है। आज तक सिंटर संयंत्रों ने सहय सीमा के भीतर माइक्रो फाइंस को नियंत्रित करने की कोशिश की है, परन्तु खनन परिचालन के दशकों से माइक्रो फाइंस का विशाल स्टॉक और साथ ही निम्न ग्रेंड के अयस्कों के सज्जीकरण ने इनके उपयोग को अत्यावश्यक बना दिया है। सीएसआईआर-आईएमएमटी ने 50% सीमा तक माइक्रो फाइंस (-100#) की कोशिश की है। इन अपशिष्टों के उपयोग से बेहतर गुणवत्ता तैयार करना संभव हुआ। FeO अवयव <10%, टीआई लगभग 50% वाले सिंटर्स का उत्पादन किया जा सका।

हाइड्रोजन प्लाज्मा द्वारा लौह अयस्कों/परिष्कृतों के प्रगलन में कमी

हाइड्रोजन प्लाज्मा प्रगलन कमी (एचपीएसआर) में भविष्य में इस्पात निर्माण करने की अत्यधिक पूर्यावरण अनुकूल हेतु संभावना है। इसको ध्यान में रखते हुए सीएसआईआर-आईएमएमटी ने हाइड्रोजन प्लाज्मा के इस्तेमाल से लौह अयस्क/फाइंस की प्रगलन कमी द्वारा लौह का उत्पादन करने के लिए कार्यक्रम क्रियान्वित किया है जिसके द्वारा CO_2 का उत्सर्जन पूरी तरह निकाला जाता है और बेंच स्केल में उक्त पूर्यावरण अनुकूल लौह तैयार करने की प्रक्रिया का प्रदर्शन किया जाता है तथा तदनुसार फ्लोशीट का विकास किया जाता है। इस प्रकार 1 किया एवं 5 किया दोनों स्तर पर प्राप्त लौह में 97.73% से अधिक 'Fe' (आयरन) होता है।

विषैले उत्सर्जन के अनुवीक्षण एवं नियंत्रण हेतु चल प्रायोगिक संयंत्र

सीएसआईआर-एनईईआरआई ने लघु एवं मझौले स्तर के उद्योगों (एसएमईएस) सिहत विभिन्न उद्योगों में धूमनाल गैस उत्सर्जन अनुवीक्षण एवं नियंत्रण अध्ययन प्रारंभ करने के लिए विषैले उत्सर्जन अनुवीक्षण एवं नियंत्रण हेतु चल प्रायोगिक संयंत्र का विकास किया है। विभिन्न लघु स्तर के उद्योगों यथा सिरामिक भट्टों, हॉट मिक्स प्लांट्स, अन्य लघु स्तर के उद्योगों आदि को प्रस्तुत करने वाले विभिन्न आकारों की धूल एवं विभिन्न सान्द्रणों की गैसों से युक्त धूमनाल गैस का इसके उत्सर्जन अभिलक्षणन हेतु अनुवीक्षण किया जाएगा। इस गैस के भाग को विभिन्न नियंत्रण प्रणालियों में भरा जाएगा तथा उनकी संग्रहण दक्षताओं को समय, तापमान, प्रवाह आदि के अनुसार मापा जाएगा। तकनीकी आर्थिक व्यवहार्यता के अनुसार निष्पादकता की जांच की जाएगी तथा उत्सर्जनों के नियंत्रण हेतु प्रणाली प्रायोगिक स्तर में उपलब्ध कराई जाएगी जिसे पूर्ण स्तर पर अधिष्ठापन हेतु उचित अनुपात में बढ़ाया जाएगा।

निकोटिन के आदी रोगियों के उपचारार्थ मॉलिक्यूलर इम्प्रिंटिड पॉलीमर्स (एमआईपीएस)

सीएसआईआर-एनईईआरआई ने निकोटिन हेतु संक्षिष्ट रिसेप्टर्स के रूप में मॉलिक्यूलरली इम्प्रिंटिड (एमआईपीएस) पॉलीमर्स का विकास किया है। एमआईपीएस में जैविक प्रणालियों यथा रक्त एवं सीरम में निकोटिन की चिकित्सीय खोज तथा निकोटिन के आदी रोगियों हेतु उपचार चिकित्साओं के विकास में विश्लेषण हेतु अनुप्रयोगों की संभावना है। शोधकर्ता प्राकृतिक अणुओं यथा (AChE) के समान चयनात्मकता के स्तरों सिहत निकोटिन हेतु अत्यिधिक चुनिंदा एमआईपी रिसेप्टर्स का विकास करने में सफल हुए। विकिसत निकोटिन एफिनिटी पॉलीमर्स जैविक बैफर्स में निकोटिन को पहचानने में समर्थ थे जो वास्तव में गत शोध की तुलना में अत्यिधक सुधार है। इसके अतिरिक्त जब pH 7.6 पर ही उच्च बन्धन दर्शाने वालों से प्राकृतिक रिसेप्टर्स की तुलना की गई तो ये रिसेप्टर्स 6.8 एवं 8.2 के बीच pH की व्यापक सीमा में प्रभावी थे। शोधकर्ताओं ने पूर्व-बहुलकीकरण प्रणालियों में कार्यात्मक मोनोमर्स निकोटिन के बीच अंत:क्रियाओं के स्वरूप को समझने के लिए यूवी स्पेक्ट्रोस्कॉपी और कंप्यूटर-समर्थित मॉलिक्यूलर अनुकरणों द्वारा निकोटिन एवं एमआईपी रिसेप्टर्स के बीच बंधन तंत्रों का अध्ययन किया। इनके अध्ययनों ने बायोलॉजिकल बफर्स में निकोटिन बंधन के इष्टतमीकरण हेतु मूल प्रक्रियाओं के विकास में प्रारंभिक बिन्दू का सृजन किया है चूंकि आमतौर पर सुदृढ़ निकोटिन-एमआईपी अंत:क्रिया को इिम्प्रिंग प्रक्रिया के दौरान नॉन-

2014-15

पॉलर कार्बनिक विलायकों के उपयोग की आवश्यकता होती है। यद्यपि निकोटिन की विशिष्टता सहित पॉलीमरिक रिसेप्टर्स का विकास किया गया है ये सिर्फ नॉन-पोलर स्थितियों में <mark>कार्य कर सकते</mark> हैं जो अंतर्जात वातावरण से काफी भिन्न होते हैं। अभी यह पुष्टि की जानी है कि क्या इन एमआईपी का प्राकृतिक रिसेप्टर्स सीधे विकल्पों (उदाहरणार्थ औषध जांच अनुप्रयोगों में) के तौर पर उपयोग में लाए जा सकते हैं परन्तु ये मुख्य आला अनुप्रयोगों यथा जैव चिकित्सा आमापों एवं सेंसर्स के लिए पहचान घटकों के रूप में अत्यधिक उपयोगी हो सकते थे।

जीएफआरपी बार्स सहित कंक्रीट बीम्स प्रबलित पर स्थैतिक एवं कठोर अध्ययन

ग्लास फाइबर रिइंफोर्स्ड प्लास्ट<mark>ि (जीएफआरपी) बा</mark>र्स सहित कंक्रीट बीम्स रिइंफोर्स्ड के स्थैति<mark>क एवं कठोर व्यवहा</mark>र अध्ययन के क्रम में और इनके परिणामों की थर्मों मिकेनिकली ट्रीटेड (<mark>टीएमटी) बार्स सहित कं</mark>क्रीट बीम्स रिइंफोर्स्ड से तुलना करने <mark>जीएफआरपी एवं टीएमटी</mark> बार्स सहित कंक्रीट बीम्स रिइंफोर्स्ड पर सीएसआईआर-एसईआरसी द्वारा प्रायोगिक जांचे की गई थीं। दस एमएम व्यास के टीएमटी और जीएफआरपी रिइफोर्समेंट बार्स का इन अध्ययनों में उपयोग किया गया था । टीएमटी बार्स का ग्रेड Fe 415 था; नम्य क्षमता, अत्यंत सहन शक्ति, दीर्घीकरण एवं नवोदित मापांक की प्रतिशतता क्रमश: 590MPa, 670MPa, 12.8 एवं 190 GPa थे। 10 एमएम व्यास के जीएफआरपी बार्स के लिए अत्यंत सहन शक्ति, अधिकतम दबाव तथा प्रत्यास्थता मापांक क्रमश: 641 MPa, 9000 me एवं 44 FPa थे। 1500mm x 100 mm व्यासों के पन्द्रह कंक्रीट बीम्स का उनके स्थैतिक एवं कठोरता शक्ति का मुल्यां<mark>कन करने के लिए अध्यय</mark>न किए गए। पन्द्रह कंक्रीट बीम्स में से मुख्य रिइंफोर्समेंट एवं हेंगर बार्स के रूप में 10mm व्यास 2टीएमटी से तीन कंक्रीट <mark>बीम्स प्रबलित किए गए</mark> थें, मुख्य रिइंफोर्समेंट एवं हेंगर बार्स के रूप <mark>में 10mm</mark> व्यास के 2 जीएफआरपी बार्स से 12 कंक्रीट बीम्स प्रबलित किए गए थे। एमएम <mark>व्यास के प</mark>रंपरागत स्टील स्टिरप्स (टीएमटी) का सभी बीम्स के लिए उपयोग किया गया। स्थैतिक अध्ययन 10एमएम व्यास के टीएमटी बार्स से प्रबलित तीन कंक्रीट बीम्स तथा 10 एमएम व्यास के जीएफआरपी बार्स से प्रबलित तीन कंक्रीट बीम्स पर क्रमश: 450 एमएमएवं 1350 एमएम की आंतरिक एवं <mark>बाह्य अवधियों के</mark> चार बिन्द् वाले बंधन के अंतर्गत स्थैतिक <mark>परीक्षण किए गए</mark> थे। एमटी एवं जीएफआर बार्स से प्रबलित कंक्रीट बीम्स हेतू औसत दरार प्रवर्तन भार मान क्रमश: $20 \mathrm{kN}$ एवं 11.3 kN थे। समरूपी <mark>औसत अंतिम भार</mark> मान क्रमश: $62.4~\mathrm{kN}$ एवं $59.2~\mathrm{kN}$ थे । टीएमटी बार्स से प्रबलित कंक्र<mark>ीट बीम्स में अने</mark>क दरारें देखी गईं जो टीएमटी बार्स के नम्य <mark>गुण दर्शाती हैं ज</mark>बकि जीएफआरपी से प्रबलित कंक्रीट बीम्स में कम दरारें देखी गईं। जीए<mark>फआरपी बीम्स में दरार</mark> की चौड़ाई परंपरागत प्रबलित बीम्स <mark>की तुलना में अधिक थी।</mark> जीएफआरपी बीम्स की अवरोध पद्धति परंपरागत रूप से प्रबलित बीम से प्रत्यक्ष रूप से भिन्न थी । टीएमटी बार्स से प्रबलित कंक्रीट बीम्स में रिइंफोर्समेंट बार्स असफल से पहले नम्य पाए गए थे (कंक्रीट को पीसना) जब<mark>कि जीएफआरपी से प्रबलि</mark>त कंक्रीट बीम्स के मामले में अवरोध <mark>जीएफआरपी रीबार्स की</mark> तड़क के कारण अचानक होता था । टीएमटी से प्रबलित कंक्रीट बीम्स की अंतिम भार लेने की क्षमता जीएफआरपी बार्स से प्रबलित कंक्रीट बीम्स की दक्षता से 7.1% अधिक थी। 55m kN के भार पर (तीन बीम्स में न्यूनतम अवरोध भार) जीएफआरपी बार्स से प्रबलित कंक्रीट बीम्स का औसत विक्षेपण 18.2 एमएम था और समान भार (55 m kN) पर टीएमटी बार्स से प्रबलित कंक्रीट बीम्स हेत् औसत विक्षेपण 8.7 एमएम था। 0.1 के भार अनुपात से चार अलग-अलग भार श्रेणियों के तहत 10 एमएम व्यास वाले जीएफआरपी बार्स से प्रबलित 9 कंक्रीट बीम्स पर फटिंग जांच की गई। स्थैतिक भार के अंतर्गत जांचों से पता चला कि जीएफआरपी बार्स से प्रबलित कंक्रीट बीम्स के परिणामस्वरूप रिइंफोर्समेंट के बराबर क्षेत्र के टीएमटी बार्स से अन्य बीम्स की तुलना में उपयोगिता के संबंध में अस्वीकार्य विक्षेपण एवं दरार चौड़ी हुई। देश में <mark>पहली बार जीएफआर</mark>पी बार्स से प्रबलित कंक्रीट बीम्स के फटि<mark>ग व्यवहार पर अध्यय</mark>न किए गए हैं। अलग-अलग चार भार श्रेणियों में जांच किए गए जीए<mark>फआरपी बार्स से प्रबलित</mark> नौ कंक्रीट बीम्स का फटिग जीव<mark>न काल मूल्यांकन के आधा</mark>र पर श्रेष्ठ अनुकूल फटिग जीवन काल वक्रता प्राप्त की गई है। आज <mark>तक किए गए अध्यय</mark>नों के आधार पर जीएफआरपी बार्स से प्रब<mark>लित कंक्रीट बीम्स</mark> के फटिग निष्पादन उत्साहवर्धक नहीं है।

कोल्ड फॉर्म्ड स्टील सेल्फ-ड्रि<mark>लिंग स्क्रूबीम-कॉलम कने</mark>क्शंस का भूकंपी व्यवहार

भवन निर्माण में कोल्ड-फॉर्म्ड स्टील (सीएफएस) सेक्शंस के उपयोग की गति बढ़ी है, क्योंकि इनके परिणामस्वरूप तीव्र एवं हल्के वजन का निर्माण होता है। इनके कारण निर्माण लागत में अत्यधिक कमी आई है। सीएफएस सेक्शंस से निर्मित भवनों का उपयोग प्राकृतिक आपदाओं यथा चक्रवात एवं भूकंप के दौरान प्रभावी ढंग से किया जा सकता है जिन्हें आपदा पश्च राहत के लिए पीडि़तों एवं अन्य लॉजिस्टिकल आवश्यकताओं हेतु तत्काल भोग के लिए भवनों एवं संरचनाओं की आवश्यकता होती है। साधारणत: यह ज्ञात है कि सीएफएस संरचनाएं सुगम अवरोध दर्शाती हैं और इन्हें सम्पूर्ण विश्व में अलग-अलग कार्य प्रणालियों के कोड़ों द्वारा सुगठित सेक्शंस के रूप में वर्गीकृत किया है। गसेट प्लेट्स के द्वारा सेल्फ ड्रिलिंग स्क्रूज के इस्तेमाल से सीएसआईआर-एसईआरसी द्वारा नया बीम-कॉलम कनेक्शन का विकास किया गया है। सीएफएस मेम्बर्स क्षीण होते हैं एवं प्रत्याहार विधि कार्रवाई के विरुद्ध कमजोर होते

2014-15

हैं। तथापि, सेल्फ ड्रिलिंग स्क्रूज अपरूपक बलों के हस्तांतरण में दक्ष होते हैं और इस प्रकार बीम एंड फोर्सेज को गसेट प्लेट्स के द्वारा अपरूपक बल के तौर पर हस्तांतरित किया जा सकता है। ये स्क्रूज अलग-अलग विन्यासों के अनुसार उपलब्ध हैं जो उपयोग पर निर्भर करती हैं। इन कनेक्शंस को कौशल पर्यवेक्षण, प्रीड्रिल्ड होल्स, साइट वेल्डिंग आदि के बिना अधिष्ठापित करना आसान है। सामान्य तौर पर उपयोग में लाए जाने वाले कोडों यथा एआईएसआई, एएस/एनजेडएस, बीएस-यूरोकोड, कैनेडियन मोड एवं आई एस:801 ड्राफ्ट के अनुसार सुदृढ़ता मूल्यांकन के लिए मार्गदर्शी सिद्धान्तों विषयक तुलनात्मक अध्ययन किए गए हैं तथा परिणामों की साहित्य में उपलब्ध संबंधित परीक्षण मानों से तुलना की गई है।

चित्र: 1.27 सेल्फ-ड्रिलिंग स्क्रूज

कोल्ड फोर्म्ड स्टील सेल्फ-ड्रिलिंग स्क्रू बीम-कॉलम कनेक्शंस (एसबीसीसी) का भूकंपीय व्यवहार

भवन निर्माण में कोल्ड-फोर्म्ड स्टील (सीएफएस) सेक्शंस के उपयोग ने गित पकड़ी है क्योंकि इनके परिणामस्वरूप तीव्र और हल्का निर्माण हो पाया है जिससे निर्माण लागत में कमी आई है। सीएफएस सेक्शंस से निर्मित भवनों को प्राकृतिक आपदाओं यथा चक्रवात एवं भूकंप से पूर्व एवं पश्च में प्रभावी ढंग से उपयोग में लाया जा सकता है जिन्हें आपदा पश्च राहत के लिए पीड़ितों एवं अन्य लॉजिस्टिकल आवश्यकताओं हेतु तत्काल उपभोग के लिए भवनों एवं संरचनाओं की आवश्यकता होती है। सीएसआईआर-एसईआरसी ने सेल्फ ड्रिलिंग स्क्रूज के इस्तेमाल से नए बीम-कॉल्म मोमेंट कनेक्शन का विकास किया है। क्योंकि सेल्फ-ड्रिलिंग स्क्रूज अपरूपण बलों को हस्तांतिरत करने में दक्ष होते हैं, विकित कनेक्शन्स बीम फोर्सेज को गसेट प्लेट के द्वारा कॉलम में हस्तांतिरत करता है। इन कनेक्शन को कुशल पर्यवेक्षक; प्रीड्रिल्ड हॉल्स, साइट वेल्डिंग आदि के बिना अधिष्ठापित करना सरल है। विकित कनेक्शन की निष्पादकता का चक्रीय भार के अंतर्गत परीक्षण अध्ययनों के द्वारा मूल्यांकन किया जाता है। इन अध्ययनों के आधार पर यह देखा गया है कि विकित कनेक्शन लक्ष्य मजबूती एवं विस्थापन प्राप्त किया है और इस प्रकार एसबीसीसी सिहत सीएफएस फ्रेम्ड बिल्डिंग्स का कम भूकंपीय क्षेत्रों में कम ऊंचाई के भवनों के निर्माण की सिफारिश की गई है।

प्रायोगिक सेट-अप

गसेट प्लेट बैंडिंग

स्क्रू बीयरिंग एवं टिल्टिंग

चित्र: 1.28 सेल्फ ड्रिलिंग स्क्रू बीम-कॉलम कनेक्शन विषयक प्रायोगिक अध्ययन

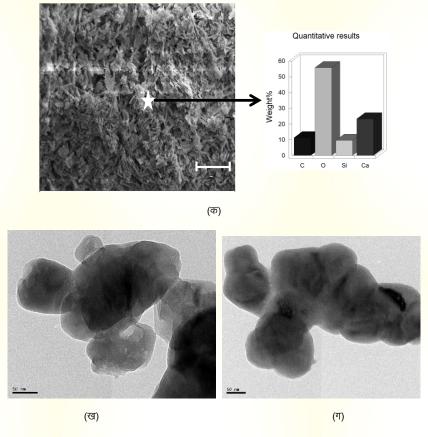
2014-15

ओपन ग्राउंड स्टोरी (ओजीएस) संरचनाएं :

भवन के एक तरह की श्रेणी जिस<mark>े ओपन ग्राउंड स्टोरी (</mark>ओजीएस) संरचनाओं के रूप में जाना <mark>जाता है, को भुज भू</mark>कंप (2001) भूकंपी आघात के आवे<mark>ग</mark> ने हिला कर रख दिया/ओपन ग्राउंड स्टोरी संरचनाएं प्रबलित ठोस फ्रेम है जो केवल ऊंची <mark>मंजिलों पर उपलब</mark>्ध मेसनरी की बनी अंत:दीवारों युक्त बीम और कॉलमों की बनी होती हैं <mark>तथा भूतल पर अत:</mark>भरण किए बिना छोड दी जाती हैं। कार्यात्मक रूप से, ये वीइकलों को खड़ा करने के उद्देश्य से बनाई जाती है। लम्बवत दुर्नम्यता सं<mark>बंधी अनियमितताओं</mark> वाली इन संरचनाओं के बल तथा विस्थापन प्रवाह में गतिरोध होता है और भूकंपी क्रियाओं के दौरान भूतल पर अधिक विस्थापन <mark>होता है । ऐसी संरचनाओं</mark> की क्षति भूतल पर होती है और अ<mark>न्य कहीं नहीं होती है ।</mark>ओजीएस संरचनाओं की भूकंपी आपदा प्रशमन रणनीति विकसित करने के लिए सीएसआईआर-एसईआरसी ने भूकंप से क्षतिग्रस्त तीन मंजिला आरसी फ्रेम भवन का पुनरुद्धार करने का प्रयास किया है। यह संरचना दो खंड, तीन मंजिला, हाफ स्केल्ड मॉडल जिसकी कुल ऊंचाई 4.8 मी. है, खंड के साथ-साथ मंजिल की ऊंचाई 1.6 मी. चौड़ाई 1.5 मी. है।इस भवन का 4एमX4एम शेक टेबल पर असफल होने तक भूकंपीय परीक्षण किया गया। कालम साइंड स्वे मेकेनिज्म के दिखलाने से असफल हुए इस भवन के भूतल स्तंभों में दरारें आयी । उक्त भवन को ज्यो- पालीमर ठोस सम्मिश्र के उपयोग से भूतल के स्तंभों में स्थानीय तौर पर मरम्मत की जाती है। ऊपर <mark>की दो मंजिलों की मौज</mark>ूद ब्रिक मेसनरीइन-फिल दीवारोंको ऑरिजिनल डैमेज्ड इन-फिल को निकालने के बाद फिर से बनाया गया है। उक्त भवन का पुनरुद्वार <mark>भूकंपी तौर पर एक्</mark>स-प्लेट (बालू घटिका कार) एडेडे डैम्पिंग तथा स्टिफनेस (एडीएएस) घटकों केउपयोग से किया जाता है। ये घटक नीचे की मंजिल पर नरम इस्पात के बने होते हैं (चित्र 1.30 क)। एडीएएस घटक का सहायक फ्रेम त्रिकोणीय प्रकार का होता है जो एडीएएल घटक को क्रमिक रूप से कठोरता में सहायक होता है। कमजोर मंजिल की समय पूर्व असफलता को रोकने के लिए मेसनरी इन-फिल का अपरूपण असफलता एक्स प्लेट के उत्पाद<mark>न से पहले हो</mark>गी। यह इस आशंका को रोकता है कि डैम्परों <mark>के उत्पादन चरण</mark> में यह संरचना किसी अतिरिक्त कठोरता के बिना कार्य करेगी। अब मे<mark>सनरी स्तंभों के अस</mark>फल के बाद एक्स प्लेट ऐसे समय पर भी अतिरि<mark>क्त अव</mark>मंदन हेतु योगदान देंगी जब उनकी कठोरता का अतिरिक्त योगदान न हो । 4एमx4<mark>एम की त्रिअ</mark>क्षीय शेक-टेबल स्विधा का उपयोग कर प्रायोगि<mark>क अध्ययन किए ग</mark>ए हैं ताकि एडीएएस घटकों के उपयोग से स्वीकृत संपूरक अवमंदन रणनीति को फिर से संयोजन करने के बाद भूकंप से क्षतिग्रस्त ओजीएस वाली आरसी फ्रेम संरचना की भूकंपी अनुक्रिया का मुल्यांकन हो सके (चित्र 1.30 ख)। वर्तमान शेक-टेबल संबंधी प्रायोगिक जांच में पून: संयोजित ओजीएस फ्रेम संरचना प्रगामीयत वृद्धि आधारित उत्तेजन आगतों के अधीन है। यह <mark>परीक्षण लगभग 1-1 पर त</mark>ब तक किया गया जब तक एक्स प्लेट ने उच्च उत्पादन तनावों को 16000 से 20000 सूक्ष्म तनावों तक विकसित करने के लिए <mark>शुरु न किया हो । भूमंजि</mark>ला स्तंभों पर तनाव शून्य है और 1500 सूक्ष्म तनाव तक सीमित है । भूमंजिल स्तभों में कोई दृश<mark>्य</mark> क्षति तथा दरार देखी नहीं<mark>गई है और असफलता एक्स प्लेट</mark> के उत्पादनतक सीमित है जिसे असफल मेकेनिज्म की अपेक्षा अधिक पंसद कियाजाता है। इस प्रकार इस पुन:संयोजित संरचना ने भूकंप इनपुट को रोका है जो ऑरिजिनल सॉफ्ट स्टोरी स्ट्रक्चर का 150% है। इस प्रकार स्वीकृत भूकंपी प्रशमन रणनीति की दक्षता सिद्ध की गई है।

चित्र: 1.29क भवन की भूमंजिला का पुनरूद्धार करते हुए एडीएएस घटकों के निकट का दृश्य

चित्र: 1.29 ख एक्स प्लेट एडीएएस घटकों के साथ पून: संयोजित ओजीएस भवन का शेक टेबल परीक्षण



2014-15

औद्योगिक अवशिष्टों तथा नैनोसिलिका के उपयोग से कम ऊर्जा वाली बीलाइट सीमेंट

कम कार्बन फुट-प्रिंट के साथ-साथ उच्च द्रवचालित सक्रियता युक्त कम ऊर्जा वाली बीलाइट सीमेंट का उत्पादन आज की आवश्यकता है और यह प्रकृति में भी अत्यधिक प्रत्याशित है। इसलिए सीमेंट उद्योग की प्रत्याशा कम ऊर्जा वाली सीमेंट का विकास करना है। जलीय रूप से सक्रिय बीलाइट से भरपूर सीमेंट का अनुसंधान तथा उत्पादन बहुत प्रासंगिक है और निर्माण उद्योग में विशेषज्ञों तथा पर्यावरणविदों के परिप्रेक्ष्य हित का है।

सीएसआईआर-एसईआरसी ने प्रदर्शित किया है कि यांत्रिक/जल ऊष्मीय रूप से सक्रिय पदार्थ जैसे चूना आपंक (एलएस), सिलिका फ्यूम(एसएफ, फेरोसिलिकॉन उद्योग के अवशिष्ट) का तापीय विश्लेषण तथा एडवांस्ड नान-कन्वेंशनल पदार्थ जैसे नैनोसिलिका (एनएस) बीलाइट फेज क्लिंकर के संश्लेषण के लिए प्रभावी है। सभी मामलों में निर्मित यह β -C2S 90% हैं, लेकिन सभी विधियों में यह ठोस अवस्था प्रतिक्रिया संबंधी विधिको अधिक प्रधानता दी जाती है चूंकि अन्य दो मामलोंकी तरह कच्चे पदार्थ में पानी तथा निस्तापन की कोई आवश्यकता नहीं होती है। फिर भी β -C2S के संश्लेषण के लिए सभी तीनों मामलों में ऊर्जा उपभोगकम है और संक्षिष्ट तापमान रासायनिक स्थिरकों के उपयोग के बिना 12000c से ऊपर के परंपरागत तापमान से बहुत ज्यादा कम है। यह उपयुक्त प्रौद्योगिकीय गुणों वाले सामान्य एलाइट क्लिंकर के उत्पादन के साथ-साथ विशिष्ट कम ऊर्जा बिलाइट क्लिंकर का पृथम औद्योगिक उत्पादन की संभावना का संकेत है।

चित्र: 1.30 (क) हाइड्रोथर्मल विधि (ख) तथा (ग) (सीएलएस तथा एसएफ के उपयोग से) द्वारा 10000c पर संक्षिष्ट बीलाइट ई-डेक्स स्पेक्ट्रम वाला एसईएम माइक्रोग्राफ, ठोस अवस्था प्रक्रिया (एलएस तथा एनएस के उपयोग से) क्रमश: 825c पर बीलाइट का टीईएम माइक्रो ग्राफ

ऐलूमिनियम मेटल मेट्रिक्स कम्पोजिट टॉर्पीडो नोज कोन

टॉर्पीडोज हेतु नोज कोन के निर्माण सहित विभिन्न अनुप्रयोगों हेतु ऐलूमिनियम आधारित घटक फोर्जिंग प्रौद्योगिकी द्वारा तैयार किए गए हैं, जो कि अधिक समय और श्रम साध्य प्रक्रिया है। सीएसआईआर-एएमपीआरआई ने XII पंचवर्षीय योजना परियोजना "स्वचालित और सामान्य अभियांत्रिकी अनुप्रयोगों हेतु नवीन ऊर्जा प्रभावी धात्विक पदार्थ" के तहत लिक्विड मेटालर्जी रूट द्वारा AI-Si(BS LM 25) एलॉय मैट्रिक्स में परिक्षेपित 10% परिशुद्ध

2014-15

(~10µm) Sic कणों के इस्तेमाल से नौ सेना सम्बन्धी अनुप्रयोगों हेतु ऐलूमिनियम मेटल-मेटल मैट्रिक्स आधारित नोज कोन घटक विकसित किया है। इस घटक ने मजबूती खोए बिना बेहतर मिकेनिकल डिम्पंग लक्षण दर्शाए हैं। यह प्रौद्योगिकी मेसर्स एक्सक्लूसिव मैग्नीशियम, हैदराबाद को हस्तांतरित की गई है और निर्मित घटक डीआरडीओ की प्रयोगशाला नेवल साइंस एंड टेक्नोलॉजी लैबोरेटरी (एनएसटीएल) विशाखापट्नम में प्रयोक्ता परीक्षणाधीन है।

भूस्खलन के उपचारात्मक उपाय <mark>के रूप में सॉइल नेल</mark> पुलआउट कैपेसिटी सिस्टम

सीएसआईआर-सीबीआरआई ने अस्थिर प्राकृतिक मृदा ढालों जिनके कारण भूस्खलन होता है, का उपचार करने के लिए उपचारात्मक उपाय के तौर पर नवीनतम सॉइल नेलिंग प्रौद्योगिकी विकसित की है। इसका उपयोग उस निर्माण तकनीक में किया जा सकता है जो भूस्खलनों को रोकने के लिए नई अथवा मौजूदा मृदा की सुरक्षित ओवर-स्टीपनिंग नियत करती है। यह अन्य विकल्पों से सस्ती है और उच्च गुणवत्ता वाली सॉइल नैल वाल्स के उत्पादन में महत्वपूर्ण है।

चित्र: 131 सीएसआईआर-सीबीआरआई में विकसित क्लोज्ड लूप सॉइल नैल फिक्सिंग और पुलआउट मशीन(5 टन)

लागत प्रभावी भूकंप प्रतिरोधी परिरुद्ध मेसनरी निर्माण प्रौद्योगिकी

सीएसआईआर-सीबीआरआई ने नवोन्मेषी और लागत प्रभावी भूकंप प्रतिरोधी प्रौद्योगिकी का डिजाइन और विकास किया है जिसकी परिरुद्ध मेसनरी प्रौद्योगिकी के तौर पर पहचान की गई है इसमें भूकंप से सम्बन्धित सुरक्षा के अत्याधुनिक स्तर सिहत तीन विविध विशेषताएं हैं। इसमें अप्रबलित मेसनरी निर्माण और मेसनरी इनफिल्स सिहत प्रबलित कंक्रीट फ्रेम निर्माण के समान मूल सामग्री उपयोग होती है परन्तु निर्माण सीक्वेंस और प्रणाली भिन्न है। ये परिरुद्ध मेसनरी निर्माण और इनका निष्पादन भारतीय निर्माण कार्य प्रणालियों और सामग्री के दृष्टिकोण से विकसित किए गए हैं। देश में मौजूदा अन्य भवन प्रौद्योगिकियों अर्थात मेसनरी अनफिल सिहत प्रबलित कंक्रीट फ्रेम्ड स्ट्रक्चर, अप्रबलित मेसनरी और प्रबलित मसेनरी की तुलना में परिरुद्ध मेसनरी की निर्माण लागत में अल्प व्यय को स्पष्ट करने के लिए कठोर लागत विश्लेषण किया गया है। ऐसी मेसनरी प्रणालियों के भूकंपी निष्पादनों का अर्ध-स्थैतिक पार्श्व भारों के तहत पूर्ण स्तरीय जांचों द्वारा मूल्यांकन किया गया है। इन भूकंप प्रतिरोधक भवन प्रौद्योगिकियों में अप्रबलित मेसनरी में और आरसी फ्रेम्ड निर्माण के रूप में समान कौशल आवश्यकताएं होती हैं। इस निर्माण प्रौद्योगिकी के परिणामस्वरूप समान डिजाइन के मानदंडों और सुरक्षा स्तर हेतु आरसी भवन की लागत में लगभग 30% की बचत होती है। इसमें स्थानीय रूप से उपलब्ध निर्माण सामग्री, कौशलों का उपयोग होता है। निर्माण किए जाने वाले परिरुद्ध मेसनरी भवनों के लिए विस्तृत डिजाइन प्रक्रिया तैयार की गई है क्योंकि कोई डिजाइन नियमावली अथवा मानक उपयोग हेतु अभी तक उपलब्ध नहीं थे।

कान्फोकल माइक्रोस्कोप का शुभारंभ

सीएसआईआर-सीजीसीआरआई ने फोटोनिक क्रिस्टल फाइबर (पीसीएफ) माध्यम का विकास किया है जबकि विविश टेक्नोलॉजी ने इसकी प्रकाशीय इलेक्ट्रॉनिकी तथा उत्पाद डिजाइन संबंधी विशेषज्ञता का उपयोग कन्फोकल माइक्रोस्कॉपी और सुपरकान्टिनम सोर्स तथा उनके सम्मिश्र समाकलन हेतु परावर्तन की तरह का प्रकाशीय संविन्यास की डिजाइन तथा विकास करने हेतु किया। 7 अक्टूबर, 2014 को डॉ. जितेन्द्र सिंह, तत्कालीन केंद्रीय विज्ञान

2014-15

एवं प्रौद्योगिकी तथा पृथ्वी विज्ञान मंत्री एवं उपाध्यक्ष, सीएसआईआर ने नई दिल्ली में इस कंफोकल माइक्रोस्कॉपी का शुभारंभ किया। मंत्री जी ने प्रधान मंत्री जी के 'मेड इन इंडिया ग्लोबल स्ट्रेटजी' हेतु शानदार शुरुआत के रूप में इस विकास की जमकर तारीख की। इस उत्पाद का विकास सीएसआईआर-एनएमआईटीएलआई परियोजना के अधीन औद्योगिक भागीदार विविश टेक्नोलॉजीज प्रा. लि., तिरुवनंतपुरम के सहयोग से सार्वजनिक-निजी भागीदारी में किया गया है। इस अवसर पर उपस्थित विज्ञान एवं प्रौद्योतिगकी विभाग के सचिव डॉ. के. विजय राघवन ने वैज्ञानिक नवोन्मेष में भारत की विशेषज्ञता की शुरुआतके रूप में डिवाइस के इस विकास का अवलोकन किया।

चित्र: 1.32 कन्फोकल माइक्रोस्कोप की शुरुआत करते हुए

डाई कैल्शियम फॉरफेट (डीसीपी) को उपयोग कर निम्न परिपक्वन वाले कांच के मेज के बर्तन

सीएसआईआर-सीजीसीआरआई ने डीसीपी के उपयोगार्थ सिरामिक अनुप्रयोग में सफल प्रयोगशाला परीक्षण किया है। प्रयोगशाला मापी परीक्षणों के मान्यकरण से डीसीपी के प्रक्रमणार्थ विधि का विकास होगा। निम्न परिपक्वन हड्डी के चाइना बर्तन (फोटो) हेतु पूर्ण प्रौद्योगिकी का विकास प्रयोगशालामापी में किया गया। सीएसआईआर-सीजीसीआरआई द्वारा पांच बोन चाइन मेंन्युफैक्चरिंग यूनिटों में निर्मित चीनी मिट्टी की ये वस्तुएं चमकीली, प्रज्जवलनशील तथा सुसज्जितथी। ये इकाइयां थी: भारत पोटरीज, जयपुर; सोनाकी सिरामिक्स, मोर्बी;मुद्रिका सिरामिक्स, वडोदरा; क्ले क्राफ्ट इंडिया, जयपुर; तथा आएसिस सिरामिक्स अंकलेश्वर। इन सभी पांच इकाइयोंने सकारात्मक फीडबैक दिया है और इस प्रौद्योगिकी में अपनी रूचि दिखाई है। इस प्रौद्योगिकी की ऊर्जा दक्ष होने की संभावना है।

चित्र: 1.33 मेज के बर्तन के कुछ उत्पाद

ऊर्जा मानीटरिंग हेतु स्मार्ट MeTER

सीएसआईआर-सीएमईआरआई द्वारा डिजाइन एवं विकसित इस स्मार्ट MeTER में उपभोक्ता आधारिका पर संस्थापित एक 220v/30A AC ऊर्जा मीटर तथा वाई-फाई हॉटस्पॉट के माध्यम से उपलब्ध कराया गया इंटरनेट कनेक्शन है। यह स्थानिक सॉफ्टवेयर http://wattcontrol.in

2014-15

से असानी से निशुल्क डाउन<mark>लोड किया जा सकता है। इ</mark>स स्मार्ट MeTER में एक अन्तर्निहित क्र<mark>मादेश भा</mark>र सीमक है जो एक बार प्रोग्राम डाउन लोड करने तथा उपयुक्त आईडी प्र<mark>विष्टि करने पर स्मार्ट</mark> फोन के माध्यम से उपभोग नियंत्रण करने <mark>के लिए है। यह मीटर पे</mark> एंड यूज मोड पर संचालित होता है तथा उपभोग संबंधी वास्तविक काल ग्राफिकल डाटा स्मार्ट फोन के माध्यम से उपलब्ध है।

चित्र: 1.34 स्मार्ट मीटर का संचालन

वनस्पतियों हेतु वातीय परिशुद्ध रोपण यंत्र

देश में सभी उद्यान संबंधी उत्पादनों में वनस्पतियां लगभग 56% होती हैं और भारतीय खाद्य उत्पादन में महत्वपूर्ण स्थान लिए हुए है तथा केवल अनाज एवं दूध के उत्पादन में इन्हें विशेष श्रेणी में रखा जाता है। उद्यान संबंधी फसलों का यंत्रीकरण देश में काफी हद तक कम है।बीजों/पौधों का समरूप वितरण तथा सही स्थानापन ऐच्छिक प्लांटिंग ज्योमेट्री वाले इष्टतम पादप संख्या के महत्वपूर्ण मानदंड है। वनस्पतियों को सूक्ष्म पादप रोपण मशीनों के उपयोग से अपेक्षित पादप संख्या हेतु सीधे बोया जा सकता है। इसमें कीमती बीजोंकी बचत, कम परिश्रम की आवश्यकता, बीजारोपण की सामयिकता तथा बराबर पैदावार परिपक्वता जैसे लाभ हैं। सीएसआईआर-सीएमईआरआई ने भारतीय कृषि अनुसंधान संस्थान, नई दिल्ली के सहयोग से तीन लाइन वाला संक्षिप्त बुवाई यंत्र का विकास किया है। यह संक्षिप्त बुवाई यंत्र बहुत से वनस्पतिक बीजों तथा भारतीय उत्पादन संबंधी कार्य प्रणालियों हेतु उपयुक्त है। बीजोंकी माप एक वैक्यूम प्रणाली से की जाती है। माप इकाई की प्रदर्शन विंडों प्रचालकों को बीज प्लेट तथा उचित एकीकरण पर वैक्यूम की जांच करने की अनुमति देती है। पादप रोपण इकाइयों की मॉड्युलर डिजाइन के कारण इस रोपण में ट्रैक्टर की एचपी के अनुसार 3/4/6 लाइनों में आसानी से संशोधन किया जा सकता है। बीज प्लेट में परिवर्तन, पादपअंतरण, गहराई तथा वैक्यूम जैसे समायोजनअकुशल किसान द्वारा आसानी से किए जा सकतेहैं। टेरेन फोलोइंग फरो ओपनर (समांतर चतुर्भुज लिंकेज सिस्टम के कारण) पादप रोपण तथा अंकुरण की एकरूप गहराई सुनिश्चित करता है। बेकार रोपण, खांचा रोपण तथा कटक रोपण के लिए परिचालित पहियों की ऊंचाई समायोजित की जा सकती है। बेहतर पारेषण तथा सरल परिवहन हेतु वातीय टायर उपलब्ध कराए जाते हैं तीन पंक्ति वाले सूक्ष्म पादप रोपण हेतु यह प्रौद्योगिकी मैसर्स सी.जे. एंटरप्राइज, लुधियाना, पंजाब को विशेष आधार पर हस्तांतरित की गई है।

चित्र 1.35: थ्री-रो प्रीसीज़न प्लांटर का दृश्य

2014-15

बरसुआ से लौह अयस्क अवपेकों का सज्जीकरण: उड़न राख से एल्युमिना की प्राप्ति

सीएसआईआर-आईएमएमटी ने पाइरो-हाइड्रो मैटलर्जिकल तकनीकों के उपयोग से उड़न राख से एल्युमिना की प्राप्ति का अध्ययन किया है। सल्फेशन रोस्ट-वाटर निक्षालन विधि के बाद हाइड्रो थर्मल क्षारीय निक्षालन के द्वारा एल्युमिना की 90% से अधिक प्राप्ति की गई है। सिलिका को अतिशुद्ध डाइकैल्शियम सिलिकेट के तौर पर प्राप्त किया गया तथा क्षार सृजित किया गया और निक्षालन हेतु पुन: चक्रित किया गया। पदार्थ शेष सिसत पूर्ण प्रवाह-चार्ट एनएएलसीओ, भूवनेश्वर हेतु तैयार किया गया है।

ब्रह्मोस कार्यक्रम में योगदान

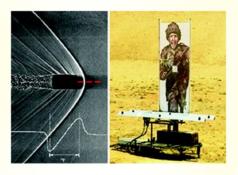
सीएसआईआर-एनएएल ने विशेष रूप से ऐसे रणनीतिक क्षेत्र के लिए महत्वपूर्ण योगदान दिए हैं जिनसे सम्मान एवं गौरव दोनों प्राप्त हुए हैं। फ्राउड स्केलिंग सिद्धांतों के उपयोग से (M<0.3) विंड टनल की 1.5 मीटर न्यून गित से एनएएल के एसयू-30एमकेआई एयरक्राफ्ट मॉडल से स्टोर्स के ड्रॉप टैस्ट किए गए। इस अध्ययन ने अग्र एवं पश्च फिंस हेतु रिफ्लेक्शन सैटिंग एंगल्स सिहत उड़ान मैच की वास्तविक संख्याओं पर जारी स्टोर्स हेतु आदर्श स्थितियां उपलब्ध कराई। विकसित सॉफ्टवेयर से टाइम रिजॉल्ड डिसप्लेसमेंट, वैलोसिटी, एक्सीलेरेशन और यूलर एंगल्स की ट्रैकिंग की गई। इसके अतिरिक्त वायु गित की भारों को प्राप्त करने के लिए 0.6 मीटर ट्राइसोनिक विंड टनल में स्केल्ड आइसोलेटिड स्टोर मॉडल पर विंड टनल टैस्ट भी किए गए। इस स्टोर मॉडल को स्केल्ड एसयू-30एमकेआई एयरक्रॉफ्ट मॉडल से जोड़ा गया और 1.2 मीटर विंड टनल में पूर्ण विन्यास पर वायुगतिकी भार निर्धारित किए गए। कैरिज पोजिशन और एयरक्रॉफ्ट इंटरफेरेंस फ्लो फील्ड में अधिष्ठापन प्रभावों, स्टोर लोड्स का निर्धारण करने के लिए आक्रमण के विभिन्न कोणों पर मैच नम्बर रेंज 0.55 से 1.2 और साइडस्लिप में परीक्षण किए गए। इस महत्वपूर्ण प्रौद्योगिकी के विकास और सहचारी उत्कृष्ट योगदान के लिए सीएसआईआर-एनएएल को ब्रह्मोस कारपोशन ने 'सर्वश्रेष्ठ प्रयोगशाला पुरस्कार 2014' प्रदान किया है। भारत के पूर्व राष्ट्रपित स्व. अब्दुल कलाम ने एनएएल को 12 जून, 2014 को नई दिल्ली में ब्रह्मोस दिवस समारोह में यह पुरस्कार प्रदान किया।

चित्र:1.36 श्रेष्ठ प्रयोगशाला पुरस्कार 2014 प्रमाण पत्र एवं ट्रॉफी

दृष्टि

नागर विमानन क्षेत्र में योगदान के लिए सीएसआईआर-एनएएल ने भारतीय मौसम विज्ञान विभाग (आईएमडी), नई दिल्ली के सहयोग से विमानन सुरक्षा के क्षेत्र में एक मुख्य उपलब्धि हासिल की। सीएसआईआर-एनएएल द्वारा विकसित दृष्टि प्रणाली, रनवे दृश्यता मापन उपकरण के संयुक्त उत्पादनार्थ सहभागिता करार पर 20 मई, 2014 को हस्ताक्षर किए गए। इस समझौता ज्ञापन के तहत सीएसआईआर-एनएएल में रु.18 लाख की लागत की 70 प्रणालियों का निर्माण किया जा रहा है। देश के सभी हवाई अड्डों पर यह प्रणाली अधिष्ठापित की जाएगी। प्रथम चरण मं, सीएसआईआर-एनएएल को 20 प्रणालियों का आर्डर मिला है। देश के विभिन्न हवाई अड्डों पर 20 दृष्टि प्रणालियों के अधिष्ठापन का प्रथम चरण प्रगति पर है। फरवरी, 2015 मं, पाँच नई अभिकल्पित दृष्टि प्रणालियों का अधिष्ठापन तथा प्रत्यावर्तन आईजीआई हवाई अड्डा, नई दिल्ली पर किया गया है। यह हवाई अड्डा देश का

2014-15


पहला हवाई अड्डा है जो अपने तीनों रनवे पर इस स्वदेशी प्रणाली का प्रचालन कर रहा है। समाकलित प्रदर्शन सिहत 'लैंडलाइन' तथा "वाई-फाई" दोनों तरह के संचार वायु यातायात नियंत्रण कक्ष तथा एप्रोच रडार कक्ष में आईएमडी के साथ संयुक्त रूप से अधिष्ठापित किए गए हैं। यह प्रणाली बहुत लागत प्रभावी है और ऊर्जा का कम उपभोग करती है तथा इसकी जीवन अविध 5 वर्ष से अधिक है। यह पूर्ण प्रणाली इस तरह से इसलिए बनाई गयी है ताकि इसका सरल अधिष्ठापन हो सके और इस प्रणाली में दूरस्थ मॉनीटरिंग/अनुरक्षण की क्षमता है।

चित्र: 1.37 आईजीआई हवाई अड्डा, नई दिल्ली के रनवे पर दृष्टि

ध्वनिक- ${f N}$ -तरंग पहचान के उपयोग से संसूचन तथा प्रहार दृश्यावलोकन

अन्य उल्लेखनीय उपलब्धि में सीएसआईआर-एनएएल द्वारा विकसित लक्ष्य पर बुलेट के प्रहार का पता लगाने के लिए ध्वनिक N-तरंग पहचान के उपयोग से संसूचन तथा प्रहार दृश्यावलोकन (डीएचएवीएएनआई) हेतु इस स्वदेशी प्रणाली का भारतीय थल सेना ने बेंगलूरु, सिकंदराबाद तथा इन्फैन्ट्री स्कूल मॅह में आर्मी रेंज का कठिन क्षेत्र परीक्षण शुरु किया है। एसडीडी सिकंदराबाद के कमांडेंट को ध्विन (डीएचवीएएनआई) को औपचारिक तौर पर जुलाई 03, 2014 को सौंपा गया। यह स्वचालित तथा नतोन्नत प्रणाली न केवल आवश्यकताओं को पूरा करती हैं बल्कि अंतरराष्ट्रीय स्तर पर उपलब्ध तुलनीय प्रणालियों के विनिर्देशों से बेहतर है। वर्तमान में इस प्रणाली की कीमत ऐसी ही अंतरराष्ट्रीय प्रणाली की कीमत का लगभग 50 से 60% है। ध्यातव्य है कि पूरे देश में आर्मी के पास 2000 से अधिक फाइटिंग लेन्स हैं जिनसे राष्ट्रीय खजाने में विदेशी मुद्रा की महत्वपूर्ण बचत होने की प्रत्याशा है।

चित्र: 1.38(क) बुलेट के पैसेज से संबद्ध एन-वेव (ख) ध्विन प्रणाली

एलसीए-तेजस

सीएसआईआर-एनएएल ने एडीए के एलसीए तेजस वायु सेना और नौ सेना वायुयान कार्यक्रमों सहित रणनीतिक क्षेत्र की मुख्य डिजाइन और विकास परियोजनाओं को अपनी सहायता जारी रखी। एलसीए नौ सेना परिवर्त का गोवा के समुद्र तट पर आधारित परीक्षण सुविधा से दिसम्बर, 2014 में प्रथम स्काई जम्प लांच का सफलतापूर्वक प्रदर्शन किया गया। सीएसआईआर-एनएएल के नेतृत्व वाले नेशनल कंट्रोल लॉ दल ने नेशनल फ्लाइट टेस्ट सेंटर, एडीए के दल के साथ मिलकर उड़ान परीक्षण में इस महत्वपूर्ण उपलब्धि को प्राप्त करने के लिए सुरक्षित और रोबस्ट प्रक्रियाएं विकसित कीं। एलसीए तेजस (वायु सेना रूपांतर) भी विस्तृत उड़ान परीक्षणों से गुजरा है जिसमें फाइनल ऑपरेशन क्लीयरेंस (एफओसी) गतिविधियों के भाग के रूप में आक्रमण के ऊंचाइयों पर मानदंड अभिनिर्धारण (पीआईडी) परीक्षण सम्मिलत हैं। फ्लाइट एनवलप लिमिट्स पर इन विशेष पीआईडी परीक्षणों को करने के लिए

2014-15

उड़ान नियंत्रण नियमों और एयर डाटा एल्गोरिथ्म्स आशोधित किए गए। ओसीसी एनवलप विस्तार के अतिरिक्त एफओसी भंडारों सहित उड़ान परीक्षण भी किए गए। एलसीए सीरीज प्रोडक्शन (एसपी) एयरक्राफ्ट हेतु सेंटर फ्यूजलेज कम्पोजिट्स और फेयरिंग्स सिहत मैन लैंडिंग गीयर (एमएलजी) Fwd डोर्स एचएएल को प्रदान किए गए। दो सैटों पर इन कम्पोजिट पार्ट्स का निर्माण करने के लिए टाटा एडवांस्ड मैटिरियल्स लि. (टीएएमएल) दल को दिए गए प्रिशिक्षण के आधार पर उन्होंने एसीडी-एनएल दल की अगुआई में सेंटर फ्यूजलेज हेतु कम्पोजिट पार्ट्स का एक सैट और फिन एवम् रडर के कार्बन फाइबर कम्पोजिट (सीएफसी) के विस्तृत पार्ट्स का निर्माण किया है। एलसीए के कार्यक्रम के अन्य महत्वपूर्ण योगदान सिम्मिलत हैं: सीएसआईआर-एनएएल की 1.2 मी. विंड टनल में मैक 1.8 तक के एलसीए एयरक्राफ्ट मॉडल पर वायु गतिकीय बल और आधुर्ण माप करना तािक एमके 1 एलसीए कम्पोजिट फिन (आशोधित नोज बॉक्स) के एयर फ्लो स्टेटिक एयरो इलास्टिक लोड विश्लेषण के कारण इंटरनल ड्रैंग का अनुमान लगाया जा सके और एलसीए-तेजस के वेक वेधन हेत् मॉडलिंग और विश्लेषण सहायता प्रदान करना।

चित्र:1.39 गोवा में समुद्र के किनारे स्थित परीक्षण सुविधा से लांच किया गया एलसीए-नेवल परिवर्त

उच्च श्रेणी के मध्यम लड़ाकू विमान (एएमसीए) हेतु योगदान

सीएसआईआर-एनएएल ने वैमानिक विकास अभिकरण (एडीए) के उच्च श्रेणी के मध्यम लड़ाकू विमान (एएमसीए) कार्यक्रम में महत्वपूर्ण योगदान दिया है। एमसीए उबी-09 एयर फ्रेम का डिजाइन और विश्लेषण कार्य एएमसी ए-उबी-08 के चरण 1 के कार्य को जारी रखते हुए प्रारंभ किया गया था। जेट फ्लोज की उपस्थिति और अनुपस्थिति में एएमसीए ऑफ्टरबॉडी मॉडल के 1:25 स्केल्ड मॉडल के आफ्टरबॉडी ड्रैग को मापने के लिए प्रायोगिक जांच की गई। इसके अतिरिक्त, एएमसीए सिम्यूलेटर (एएमसीसिम) के मॉडल्स का मैटलैब और सिम्यूलिंक के इस्तेमाल से डिजाइन और विकास किया गया। एएमसीएसिम आवश्यकताओं, प्रारंभिक पायलेट-वीहिकल इंटरफेस और उड़ान नियंत्रण मंद विकास की जांचों का विश्लेषण करने के लिए उत्कृष्ट विश्लेषण साधन उपलब्ध कराता है।

NiTi शेप मैमोरी एलॉयज हेतु उत्पादन प्रौद्योगिकी

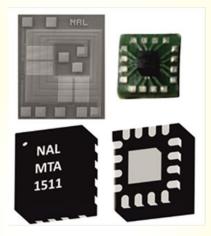
सीएसआईआर-एनएएल ने अनेक वर्षों से विशेष पदार्थ के क्षेत्र में महत्वपूर्ण योगदान दिए हैं। हिन्दुस्तान एयरोनोटिक्स लिमिटेड (एचएएल), बेंगलूरु और मिश्रधातु निगम (मिधानी), हैदराबाद के सहहयोग से 20-40 किग्रा गलन क्षमता में NiTi शेप मैमोरी एलॉयज के उत्पादन हेतु प्रौद्योगिकी का विकास सफलतापूर्वक पूरा किया गया है। विभिन्न उत्पादों यथा रॉड्स, स्ट्रिप्स और वायर्स का वांतरिक्ष और अन्य इंजीनियरिंग दोनों क्षेत्रों में अनुप्रयोगों हेतु निर्माण किया गया है। यह प्रौद्योगिकी एचएएल और मिधानी को हस्तांतरित की जा रही है। सीएसआईआर-एनएएल और मिश्रधातु निगम लि. (मिधानी) ने मानक मॉड्यूल्स कार्बन फाइबर्स के विकास के लिए अक्तूबर, 2014 में

समझौता ज्ञापन पर हस्ताक्षर <mark>किए हैं । यह समझौ</mark>ता ज्ञापन मिधानी के साथ शृंखला में दूसरा <mark>है । इस समझौता</mark> ज्ञापन के तहत प्रथम चरण में मिधानी मानक मॉड्यूल्स कार्बन <mark>फाइबर्स के विरचन हेतु सतत</mark> प्रक्रम विकसित करने में सीएस<mark>आईआर-एनएएल को सहायता</mark> प्रदान करेगा । दूसरे चरण में <mark>इस</mark>

2014-15

समझौता ज्ञापन के तहत की <mark>गई जांचों के परिणामों</mark> का उपयोग कार्बन फाइबर की ज्यादा मात्रा का उत्पादन करने के लिए इस प्रौद्योगिकी के उन्नयन के लिए किया जाएगा। सीएसआईआर-एनएएल के प्रायोगिक संयंत्र की क्षमता को मौजूदा संयंत्र और मशीन का लगभग 80% उपयोग जारी रखते हुए कुछ उपकरण और प्रणालियों के संवर्धन/आशोधन द्वारा कार्बन फाइबर को 25 से 50 टन प्रतिवर्ष बढ़ाया जाएगा।

सूक्ष्म डिजिटल ऑटोपाइलेट


देश में सीएसआईआर-एनएएल माइक्रो एरियल वीइकल (एमएवी) के विकास की प्रमुख एजेंसी है। एमएवी हेतु सूक्ष्म ऑटोपाइलट हार्डवेयर संबंधी विकास के क्षेत्र में संस्थान ने ऑटोपाइलेट हार्डवेयर माड्यूल वर्जन 4.0 (एपीवी4) का सफलतापूर्वक डिजाइन तथा विकास किया है। इस हार्डवेयर का ग्राउंड इंटीग्रेशन लेब में और स्काई सफर पर उड़ान में ईजी स्टार्ट और स्लाइ बर्ड एमएवी प्लेटफार्म पर परीक्षण किया गया है। एपीवी4 10 डीओएफ संवेदकों तथा फ्लेश बेस्ड डाटा लॉगर ऑन बोर्ड के समनुरूप बनाया जाता है। बाह्य जीपीएस, आरएफ मॉड्यूल, सर्वो, नोदन हेतु अन्तरापृष्ठ तथा अन्य सहायक अन्तरापृष्ठ कोर संयोजकों के माध्यम से उपलब्ध कराएजाते हैं। उक्त मॉड्यूल को 20 ग्राम भार के लक्ष्य के सापेक्ष कुल 13 ग्राम भार पूरा किया गया है।

चित्र:1.41 वे पॉइंट वाले डिजिटल ऑटोपाइलट

चुंबकीय प्रतिरोधी संवेदक

सीएसआईआर-एनएएल ने नौ संचालन के लिए त्रिअक्षीय चुंबकत्वमापी के विकासार्थ विषमदेशिक चुंबकत्वी प्रतिरोधी प्रभाव (एएमआर) पर आधारित चुंबकीय प्रतिरोधी संवेदक की रचना की है। एकल डिवाइस में, दो एएमआर संवेदकों को लंब कोणीय दिशाओं में रखा गया है ताकि यादृच्छिक क्षेत्र संबंधी दिशाओं का यथार्थ माप हो सके। इस प्रक्रम को 2इंच के सिलिकॉन नाइट्राइड वेफरों हेतु बढ़ाया गया है।

चित्रः 1.42 एएमआर संवेदक 1

नागपुर आयुध निर्माणी में नवीन सीवर उपचार प्रणाली

शहरी क्षेत्रों, विशेष रूप से <mark>नागपुर में पानी की</mark> कमी को पूरा करने के लिए सीएसआईआर-एनईईआरआई ने परंपरागत एंड-ऑव-पाइप जल प्रबन्धन से समाकलित अभिगम तक आमूल-चूल परिवर्तन प्रारंभ किया है। सीएसआईआर-एनईईआरआई द्वारा विकसित प्रौद्योगिकी आर्थिक प्राकृतिक सीवर उपचार प्रणाली का प्रदर्श और अधिष्ठान करने के लिए नागपुर में आयुध निर्माणी अम्बाझारी का चयन किया गया है। इस उपचार प्रणाली में उच्च दर के अपफ्लो

2014-15

एवैरोबिक फिल्टर लगा है जो सीवर से कार्बनिक प्रदूषकों को निकालने में सहायता देता है। उपसतही क्षेतिज प्रवाह से निर्मित आई भूमि नाइट्रोजन और फॉस्फोरस सहित शेष प्रदूषकों को निकाल देती हैं। यह उपचारित बहिस्राव पश्चात प्रेशर सेंड फिल्टर से गुजरती है और कार्बन कॉलम्स को सिक्रय करती है जो रीकैल्सीट्रैंट कार्बनिक्स नामक अजैवनिम्नीकरणीय कार्बनिक पदार्थ को समाप्त करती है। अंतत: उपचारित बहिस्राव क्लोरीनन अथवा पराबैंगनी (यूवी) किरणों के इस्तेमाल से विसंक्रमित किया जाता है और सभी अपेय प्रयोजनों के लिए इस्तेमाल किया जाता है। 'स्लज ड्राईंग रीड बेड्स (एसडीआरबी)' नामक निर्मित आई भूमि के द्वारा स्लज प्रबन्धन का देश में पहली बार प्रदर्शन किया जा रहा है। यह उपचार प्रणाली 1000 जनसमुदाय द्वारा सृजित सीवर का उपचार एवम् प्रबन्ध करेगी और प्रतिदिन 1 लाख लिटर सीवर का उपचार करेगी। आयुध निर्माणी, अम्बझारी, नागपुर में 15 एकड़ क्षेत्र में फैले बहुउद्देशीय लॉन का रखरखाव करने और आम के बागों की सिंचाई करने के लिए उपचारित बहिस्राव का उपयोग किया जाएगा।

पर्यावरणीय मॉनीटरन हेतु इलेक्ट्रॉनिक नोज

लुगदी और कागज उद्योग में खतरनाक गैसों को सूंघ कर पता लगाने के लिए सीएसआईआर-एनईईआरआई तथा सेंटर फॉर डेवलपमेंट ऑव एडवांस्ड कम्प्यूटिंग (सी-डैक) द्वारा संयुक्त रूप से इलेक्ट्रॉनिक नोज (ई-नोज) का विकास किया गया है। यह इलेक्ट्रॉनिक नोज भारत में विकसित की जाने वाली अपनी तरह की पहली प्रौद्योगिकी है। इसमें गंध के अणुओं को पहचानने के लिए इंटेलिजेंट सॉफ्टवेयर का इस्तेमाल होता है। यह सुवाह्य उपकरण है जो मानव के घ्राण बोध (गंध संवेद) के समान सिद्धांत पर कार्य करने वाले सेंसर्स के एरे के इस्तेमाल से गंध सान्द्रण तथा गंध सघनता को मापता है। यह सेंसर एरे सगंध की किस्म पर आधारित पद्धित का सृजन करता है। इस सॉफ्टवेयर को विशेषज्ञों के प्रेक्षणों पर आधारित सूचना फीड करके तैयार किया जा सकता है। ई-नोज लुगदी और कागज उद्योग में अनुप्रयोग हेतु विशेष रूप से उपयोगी है। यह उद्योग विभिन्न प्रकार की गैसें यथा हाइड्रोजन सल्फाइड, मेथिल मर्केप्टन, डाईमेथिल सल्फाइड छोड़ता है। इन सबका निर्धारित सीमा से अधिक सान्द्रण पर्यावरण और मानव स्वास्थ्य पर विपरीत प्रभाव डालता है। इन गैसों के सांद्रण को लगातार मॉनीटरन करना कामगारों के लिए वरदान है। इसके अतिरिक्त, इसने महंगे और समय का अधिक उपभोग करने वाले उपलब्ध सभी विश्लेषणात्मक उपकरणों की सीमाओं का अतिक्रमण किया है। वर्तमान में ई-नोज कर्नाटक के भद्रावती में मैसूर पेपर मिल्स लिमिटेड और तिमलनाडु की कागज मिल में सफलतापूर्वक कार्य कर रही है।

चित्र: 143 सीएसआईआर-एनईईआरआई और सीडीएसी-कोलकाता द्वारा संयुक्त रूप से विकसित ई-नोज में सेंसर एरे

मैगस्टार

सीएसआईआर-एनएएल ने लौह संरचनाओं/घटकों के नॉन-डिस्ट्रिक्टव मूल्यांकन हेतु मैग्नेटिक हिस्टेरेसिस लूप एवम् बार्कहाउजेन उत्सर्जनों पर आधारित सुवाह्य मैग्नेटिक सेंसिंग उपकरण का विकास किया है। यह प्रौद्योगिकी मेसर्स टेक्नो फोर, पुणे को लाइसेंसीकृत की गई। टेक्नो फोर, पुणे द्वारा वर्ष 2014-15 में दो यूनिट्स: जेएसडब्ल्यू स्टील, बैलारी को एक यूनिट तथा सीएसआईआर-एनएमएल द्वारा एनटीपीसी को एक यूनिट बेची गई।

तांबा आधारित मिश्रधातुओं हेतु बदरंग रोधी रोगन का विरचन

कार्बनिक संदमकों का व्यापक रूप से स्वीकृत संदमन तंत्र है जो विषम परमाणु (एन, एस और पी) तांबे के साथ मिलकर समन्वयकारी बॉंड्स बनाता है, परिणामस्वरूप इन कार्बनिक अणुओं के लिए कैमिसोप्शन रक्षात्मक परत का निर्माण करता है। इन कार्बनिक संदमकों का उपयोग समाधान के तौर पर संक्षारण रोकने में सफल रहा है परन्तु इनका बाह्य अथवा समुद्री पर्यावरणों में तांबे और इसकी मिश्रधातुओं का संक्षारण से संरक्षण हेतु आवश्यकतानुसार कोटिंग के तौर पर इस्तेमाल करने पर। इनमें से कुछ ही दीर्घ अविधयों हेतु दक्ष संदमन उपलब्ध करा पाते हैं। सीएसआईआर-एनएमएल ने नए कार्बनिक बहुलक का विकास किया है जिसका समुद्री जल की तरह अति संक्षारणीय पर्यावरणों में तांबे और इसकी मिश्रधातुओं का बचाव करने के लिए कोटिंग के

2014-15

तौर पर उपयोग किया जा सकता है। यह बहुलक रासायनिक अंत:क्रियाओं के द्वारा तांबे के साथ प्रभावशाली ढंग से जम जाता है। इस बहुलक की विरचन प्रौद्योगिकी बहुलक के वाणिज्यिक उत्पादन हेतु मेसर्स मल्टीकोट सरफेस प्राइवेट लिमिटेड, कोलकाता नामक कंपनी को हस्तांतरित की गई। इस कंपनी का विचार समुद्री पर्यावरणों में इस्तेमाल में लाए जाने वाले पीतल पर पहली परत के तौर पर इस बहुलक का उपयोग का है।

रजत तथा तांबा आधारित मिश्र धातुओं हेत् बदरंगरोधी रोगन

सीएसआईआर-एनएमएल ने त्वरित रखने वाला अविषेला बदरंग रोगन का विकास किया है जो पीतल, तांबे, कांस्य तथा रजत के ऊपरी भाग पर उपयोग के लिए है। यह कालापन को रोकता है और पानी-एसिड तथा क्षारीय वातावरण को टिकाऊ पारिष्करण प्रतिरोध उपलब्ध कराता है। सिक्रय संक्षारण निरोधकों युक्त यह फार्मूला रासायनिक ढंग से एक्रीलिक पॉलीमर बैक बोन से संबंधित है, अतेव तांबा, पीतल, कांस्य और कई वर्षों की लंबी अविध वाली मदों की मिलनता को रोकता है। इस रोगनको स्प्रे, ब्रुश, अप्लावन कर लगाया जा सकता है और इसकेशुष्क होने में 10 मिनट का समय लगता है। प्रशोधन जैसे बेकिंग अपेक्षित नहीं है। यह कोटिंग साल्ट स्प्रे परीक्षण (एएसटीएमबी 117) के 500 घन्टे गुजारता है और सल्फर परीक्षण (एएसटीएमबी 809) के पुष्प के 72 घंटों को गुजारता है।

आपूर्तित डब्ल्यूसी-कठोर धातु स्क्रैप्स से उच्च शुद्धता वाले टंगस्टन पाउडर का उत्पादन

टंगस्टन (डब्ल्यू) दुलर्भ एवम् सामिरक महत्व की धातु है जिसके अनेक महत्वपूर्ण गुण हैं। इस धातु और इसकी मिश्रधातुओं के रक्षा, ऊर्जा, खनन एवम् अन्य क्षेत्रों में अनेक महत्वपूर्ण अनुप्रयोग हैं। वैश्विक टंगस्टन बाजार में चीन की आपूर्ति (~84%) का वर्चस्व है और इसलिए इस धातु का उच्च आपूर्ति जोखिम इंडेक्स है। भारतीय टंगस्टन रिवर्ज बहुत कम है और देश पूरी तरह से आयात पर निर्भर रहता है। उपलब्ध विभिन्न गौण स्रोतों से इस धातु की दक्ष प्राप्ति की न सिर्फ विदेशी मुद्रा की बचत बल्कि अपनी महत्वपूर्ण घरेलू आवश्यकताओं हेतु अपने देश को आंशिक तौर पर स्वावलम्बी बनाने में भी अत्यधिक राष्ट्रीय प्रासंगिकता है। सीएसआईआर-एनएमएल ने डब्ल्यूसी कठोर धातु स्कैप्स की किस्म से टंगस्टन एवम् अन्य महत्वपूर्ण धातुओं यथा Ni और Co प्राप्त करने के लिए नवोन्मेषी प्रक्रम फ्लो शीट का विकास किया है। इस विकसित प्रक्रम की विशिष्टता में उच्च टंगस्टन एवम् अन्य धातुओं की प्राप्ति (>95%) और उच्च उत्पाद शुद्धता सम्मिलत है। यह प्रक्रम बहुत कम अथवा न ठोस न ही तरल बहिस्रावों के सृजन सहित अपेक्षित उत्पाद विनिर्देशों को पूरा कर सकता है। इस विकसित प्रक्रम की तकनीकी जानकारी पूर्व में दो एमएसएमई को हस्तांतरित की गई है और हाल में इसे मेसर्स मेटकेम वॉल्फ्रेम लि., कोलकाता को हस्तांतरित की गई है जो नागपुर के निकट 5-8 एमटी/मासिक क्षमता वाला डब्ल्यू पाउडर उत्पादन संयंत्र स्थापित कर रहा है।

ऊर्जा दक्ष कोक आधारित पीतल एवम् बेल मैटल गलन भट्टी

सम्पूर्ण देश में पीतल के बर्तन के कारीगर पीतल एवम् एलूमिनम मिश्रधातुओं को गलाने के लिए अभी तक प्राचीन घरेलू कोल/कोक से जलने वाली भट्टी का इस्तेमाल कर रहे हैं जो ईधन अदक्ष, प्रदूषण फैलाने वाली एवं खतरनाक है। सीएसआईआर-एनएमएल ने भारत के पीतल के बर्तनों के कारीगरों के लिए प्रौद्योगिकीय हस्तक्षेप उपलब्ध कराने के लिए कदम उठाए हैं। ओडिशा के बालासोर जिले के कारीगरों के लिए पर्यावरण अनुकूल एवम् ऊर्जा दक्ष पीतल एवम् बेल मैटल को गलाने वाली भट्टी का डिजाइन और विकास किया गया है। इस विकसित भट्टी की विशेषताएं हैं: कोक उपभोग को (लगभग 20%) कम किया, हानिकारक गैस उत्सर्जनों और प्रदूषण को (~80%) कम किया, प्रति बैच गलन चक्र (20%) कम किया, परंपरागत भट्टी में न्यूनतम परिवर्तन, उत्पादकता में (30%) वृद्धि।

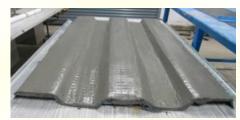
अपशिष्ट क्लोराइड पिकल लिकर से फैराइट और वर्णक ग्रेड मोनो-परिक्षेपित नैनो आयरन ऑक्साइड का उत्पादन

अपशिष्ट क्लोराइड पिकल लिकर से समान विस्तार एवम् आकृति के मोनो परिक्षेपित आयरन ऑक्साइड के उत्पादन के लिए सीएसआईआर-एनएमएल में सामान्य नवोन्मेषी प्रक्रम विकसित किया गया। यह प्रक्रम इस तरह से समायोजित है कि विशेष प्रकार के विस्तार एवम् आकृति का अपेक्षित चुंबकीय गुणों सिहत निर्माण किया जा सके। इस प्रक्रम का मुख्य लाभ है कि इसमें निम्न तापमान संश्लेषण हैं और इस प्रणाली में उपस्थिति विभिन्न अशुद्धताओं को दूर किया जाता है, और यह कि इसमें किसी मुख्य अशुद्धता का निष्कासन स्तर सिम्मिलत नहीं हैं। मेसर्स टाटा स्टील के साथ संयुक्त रूप से इस प्रक्रम को किलोग्राम स्केल तक और अधिक उन्नत किया गया है और एक पूर्ण फ्लोशीट विकसित की गई। प्रस्तुतीकरण/निर्मित सूक्ष्म आकार के आयरन ऑक्साइड की जांच की गई और ये उच्च ग्रेड के वर्णक तथा सोफ्ट हाई एंड मैग्नेटिक मैटिरियल के लिए पूर्ववर्ती के रूप में अपने अनुप्रयोग के संदर्भ में आशाजनक पाए गए। विकसित प्रक्रम मेसर्स टाटा पिगमेंट्स लि. को प्रदर्शित एवम् हस्तांतरित किया गया। इस प्रक्रम ने बेहतर वर्णक गुणवत्ता सिहत हल्के ग्रेड के आयरन ऑक्साइड की किस्म का उत्पादन किया।

2014-15

लकड़ी एवम् ईंटों हेत् विकल्प

सीएसआईआर-एसईआरसी ने लकड़ी और ईंटों का विकल्प तैयार किया है जो न केवल सस्ता बल्कि टिकाऊ भी है। यह विकल्प सीमेंट मसाले सिहत लोहे की जाली का प्लास्टर है। सीएसआईआर-एसईआरसी ने परंपरागत ईंटों के बदले नई प्रौद्योगिकी प्रयोग में लाकर अलमारियों, छत की कड़ियों, पानी की टंकियों और शौचालयों एवम् स्नान घरों का विकास किया है। जबिक ईंटों को बदलने से लागत 30% तक कम हो सकती है, लकड़ी प्रतिस्थापन के मामले में व्यय 50% तक कम किया जा सकता है। तथापि इस प्रौद्योगिकी के लिए कुशल श्रमिक की आवश्यकता होती है।


टेक्सटाइल प्रबलित कंक्रीट आदिप्ररूप प्रौद्योगिकी

सीएसआईआर-एसईआरसी की एक पूर्व-रचना क्रियाविधि जिसे टेक्सटाइल प्रबलित कंक्रीट आदि प्ररूप प्रौद्योगिकी (टीआरसीपीटी) कहा जाता है, टेक्सटाइल प्रबलित कंक्रीट (टीआरसी) उत्पादों के उत्पादन के लिए है। यह प्रौद्योगिकी (पेटेंट फाइलिंग संख्या: 2751 डीईएल 2014) कंक्रीट निर्माण के उस परंपरागत तरीके को पूर्णतया परे रखती है जिसमें सांचों का उपयोग होता है। इस एकल प्रौद्योगिकी के उपयोग से, टेक्सटाइल/फेब्रिक प्रबलित सम्मिश्र परतों को प्रोटोटाइप किया जाता है तािक विभिन्न आकार एवं रूपों के बहुत से उत्पादों का उत्पादन किया जा सके। उत्पादन के बाद टीआरसी परतों को जल्दी निर्मित किए जाने वाले आकार पर रखक

र इस आदिप्ररूप को बनाया जाता है और यह विशिष्ट संविन्यास को एक समान करता है। इस प्रौद्योगिकी में सम्मिलित इस प्रक्रम को संरचनात्मक तथा गैर संरचनात्मक अनुप्रयोगों पर निर्भर रहते हुए आसानी से आवश्यकतानुसार तैयार किया जा सकता है जो इसका लक्ष्य है। इस प्रौद्योगिकी का बढ़ना और घटना कार्यस्थल के अनुप्रयोगों हेतु भी संभव है। टीआरसीपीटी से बने टीआरसी के विभिन्न उत्पादों को कैनल लाइनिंग और सैंडविच पैनल्स, मुहार संबंधी तत्वों, औद्योगिक फर्श, स्ट्रीट फर्नीचर, कैनोपी संरचनाएं बस अड्डों के मेहराब/साइकिल स्टैंड के महराब/रेलवे स्टेशलकी छतों के लिए, पार्टीशन दीवारें घरों/कार्यालयों के लिए, उच्च गति वालेमोटर मार्गों तथा रेलवे के किनारे ध्विन प्रतिबंधों के लिए और बहुत से गैर संरचनात्मक अनुप्रयोगों जैसे वाश बेसिन, लैंड-स्केपिंग के लिए भी उपयोग किया जा सकता है। टीआरसी विभिन्न मेसनरी तथा कंक्रीट संरचनाओं की मरम्मत, पुनर्वासन तथा पुनः सयोजित पदार्थों हेतु भी उपयोग किया जा सकता है। क्षितग्रस्त कैनल के छोटे खिचाव हेतु की गई कैनल लाइनिंग का ब्यौरा चित्र 1.44क में दिया गया है। टीआरसीपीटी प्रौद्योगिकी से उत्पादित टेक्सटाइप प्रबलित कंक्रीट रूफिंग शीट चित्र 1.1.44ख में दर्शायी गयी है। टीआरसी शीटों के उपयोग से प्रबलित कंक्रीट बीम का सुदृढ़ीकरण।

टेक्सटाइल प्रबलित कंक्रीट को उपयोग से कैनल लाइनिंग

टीआरसी रूफिंग शीट

चित्र: 1.44 टीआरसी के उपयोग से बीमों का सुद्दीरण

स्वपोषी संरचनात्मक स्वास्थ्य मानीटरिंग प्रणाली हेतु स्मार्ट ऊर्जा हार्वेस्टर्स

सीएसआईआर-एसईआरसी ने परिवेश स्पंदन संबंधीऊर्जायुक्त वायरलेस सेंसर नोडों हेतु प्रौद्योगिकी (पेटेंट फाइलिंग संख्या: 0359 डीईएल 2015) का विकास किया है। ये नोड प्राकृतिक आपदा प्रशमन या ऐसे ही विशिष्ट अनुप्रयोगार्थ संरचनात्मक स्वास्थ्य मानीटरिंग/सिविल अवसंरचनाओं के नियंत्रण हेतु उपयोग की जाती है। यह ऊर्जा हार्वेस्टर (चित्र1.46क एंड 1.46ख) कम ऊर्जा वाली सेंसर नोडों को ऊर्जा दे सकता है और किसी विशेष अनुप्रयोग में

2014-15

संसर की सहायता कर सकता है। यह योजना जो ऊर्जा के संदर्भ में स्वतंत्र है, निम्न की आवश्यकता को पूरा करती है: 1) महत्वपूर्ण अवसंरचनाओं की सतत गतिक मानीटरिंग, 2) भूकंपीय क्षित प्रशमन और 3) विभिन्न पुन: संयोजन संबंधी उपायों का निर्णय करने में। यह प्रणाली दूरस्थ या पहुंच से बाहर के स्थानों की संरचना पर स्थायी रूप से स्थापित की जा सकती है और बैटरियों की प्रणाली जिसे प्राय: पुन:स्थापन की आवश्यकता होती है, को पुन:स्थापित किया जा सकता है। यह प्रणाली सूक्ष्म-ऊर्जा हार्वेस्टिंग पद्धितयों से संबंधित है और यह प्रौद्योगिकी हमारे चारों और संधारणीय पर्यावरण को बेहतर सहायता करेगी। यह नए क्षेत्रों को खोलता है जहां सुरक्षा, वायुयान तथा अंतरिक्ष अनुप्रयोगों में कम ऊर्जा वाली सेंसर नोडोंकी ऊर्जा देना एक चुनौती है।

चित्र: 1.45क रमार्ट ऊर्जाहार्वेस्टर-हार्वेस्टेड ऊर्जा के उपयोग से मोबाइल चार्जिंग के प्रदर्श के दौरान

चित्र: 1.45ख स्वदेश में विकसित ट्रांसमीटर तथा रिसीवर

ईपीएस पैनलों के उपयोग से सामृहिक आवास हेतु नवोन्मेष भवन प्रौद्योगिकी

सीएसआईआर-एसईआरसी ने एक्सपेंडेड पॉलिस्टाइरीन (ईपीएस) पैनलों का उपयोग कर (जी+1) तथा (जी+3) प्रबलित कंक्रीट भवनों का विश्लेषण डिजाइन तथा संरचना संबंधी विस्तृत वर्णन किया है। यह प्रौद्योगिकी पुनर्वासनआवास कार्यक्रम श्रीकाकुलम, आंध्र प्रदेश के तहत 'हुदहुद'चक्रवात पीडि़तों हेतु मैसर्स कंसोशियम ट्रांसिशन सिस्टम्स प्रा. लि. (सीटीएसपीएल), हैदराबाद को हस्तांतिरत की गई है। चार सौ छियानवे आवास इकाइयोंका निर्माण किया जा रहा है (चित्र:1.47)। इस प्रौद्योगिकी की प्रमुख विशेषताएं हैं: निर्माण का त्विरत मोड, आवासों के बृहद उत्पादनार्थ अनुकूल, वहनीय एवं आपदा रोधी (चक्रवात तूफान माऐ हेतु प्रतिरोधी)

चित्र:1.46 ईपीएस पैन का उपयोग कर मास हाउसिंग

2014-15

1.4 सूचना विज्ञान

1.4.1 वैज्ञानिक उत्कृष<mark>्टता</mark>

भारत ने कोलगेट-पामोलिव को माउथवॉश फार्मूले का पेटेंट कराने से रोका

भारत ने प्राचीन ग्रन्थों का हवाला दे<mark>ते हुए</mark> औषधि तत्वों को समाविष्ट करने वाले माउथवाश फार्मूले <mark>को पेटेंट</mark> कराने के लिए उपभोक्ता वस्तुओं की विशाल कंपनी कोलगेट-पामोलिव के प्र<mark>यत्नों को विफल कर</mark> दिया है। प्राचीन ग्रन्थ दर्शाते हैं कि इसे (माउथवाश फार्मूले को) प्राचीन चिकित्सा पद्धतियों में पारंपरिक रूप से प्रयोग किया जाता था। <mark>सीएसआईआर ने</mark> अपने पारंपरिक ज्ञान डिजिटल पुस्तकालय (टीकेडीएल) कार्यक्रम के माध्यम से प्राचीन ग्रन्थों से प्राप्त संदर्भों के रूप में प्रमाण प्रस्तुत <mark>किए जिसके कारण पेटेंट</mark> आवेदन को वापस लेना पड़ा।

सीएसआईआर जर्नलों के प्रभावांक में वृद्धि

सीएसआईआर-निस्केयर वैज्ञानिक समुदाय को अपने 18 अंतरराष्ट्रीय ख्याति प्राप्त जर्नलों जिनमें विज्ञान एवं प्रौद्योगिकी के मुख्य विषय शामिल हैं, के माध्यम से स्कालर्ली रिसर्च कम्यूनिकेशन लिंक उपलब्ध कराता रहा है। अन्य जर्नलों की तुलना में इनमें से कुछ जर्नलों को राष्ट्रीय स्तर पर उनके कार्य क्षेत्र के प्रभावांक में वृद्धि करने हेतु निशाना बनाया गया है।

वैज्ञानिक जागरुकता का प्रसार

सीएसआईआर-निस्केयर की तीन लोकप्रिय विज्ञान पत्रिकाएं अंग्रेजी, हिंदी तथा उर्दू में देश की सिविल सोसाइटियों के बीच वैज्ञानिक मुद्दों के बारे में जागरूकता का प्रसार कर रही हैं। ये पत्रिकाएं सिविल सोसाइटी को विज्ञान एवं प्रौगद्योगिकी से जोड़ने में महत्वपूर्ण रूप से भूमिका निभा रही हैं। ये पत्रिकाएं 'विज्ञान प्रगति (हिंदी), ' 'साइंस रिपोर्टर (अंग्रेजी), ' तथा 'साइंस की दुनियां (उर्दू)' साइंस की डिग्री लेने वाले युवाओं मे अत्यधिक लोकप्रिय हैं।

चित्र:1.47

पुस्तकालय संसाधनों का साझा करना

सीएसआईआर-निस्केयर सीएसआईआर की 38 भागीदार प्रयोगशालाओं की नोडल प्रयोगशाला है जो परियोजना शीर्षक "सीएसआईआर नालेज गेटवे एंड ओपन सोर्स प्राइवेट क्लाउड इन्फ्रास्ट्रक्चर (केएनओडब्ल्यूजीएटीई)" के लिए है। संस्थान ने भागीदारी करने वाली सभी 38 प्रयोगशालाओं से सहभागिता हेतु सहमति प्राप्त की। इसके अतिरिक्त ओपन स्टैक सॉफ्टवेयर का उपयोग करते हुए सीएसआईआर प्राइवेट क्वलाउड का आदिप्ररूप विकसित किया गया है। यह सीएसआईआर प्राइवेट क्लाउड सीएसआईआर-निस्केयर के डाटा केंद्र पर रखा जाएगा।

ऑनलाइन सूचना संसाधनों तक सीएसआईआऱ-वाइड कंसोर्शियम पहुंच

सीएसआईआर-निस्केयर सीएसआईआर के सभी वैज्ञानिकों को अनुसंधान एवं विकास संबंधी सूचना तक पहुंचने के लिए मदद करता है। संस्थान ने सीएसआईआर की सभी प्रयोगशालाओं की आवश्यकता का विश्लेषण किया और 15 अंतरराष्ट्रीय प्रकाशकों का अभिनिर्धारण किया जिनके संसाधन सीएसआईआर के सभी वैज्ञानिकों एवं अनुसंधानकर्ताओं के लिए उपलब्ध करा दिए गए हैं। सीएसआईआर-निस्केयर द्वारा शासित नेशनल नॉलेज रिसोर्स कंसोशियम (एनकेआरसी) भी देश के सभी डीएसटी सहायता प्राप्त संस्थानों के लिए अनुसंधान एवं विकास संबंधी सूचना उपलब्ध कराता है।

सीएसआईआर आउटरीच

सीएसआईआर-निस्केयर द्वारा प्रकाशित दो समाचार पत्र— सीएसआईआर न्यूज (अंग्रेजी में) और सीएसआईआर समाचार (हिंदी में) - अन्य अनुसंधान एवं विकास संगठनों, विश्वविद्यालय के विभागों, उद्योगों एवं अन्य प्रयोक्ताओं हेतु सीएसआईआर की विज्ञान एवं प्रौद्योगिकी संबंधी उपलब्धियों के संबंध में विविध सीएसआईआर घटकों और जानकारी जुटाने वालों के बीच प्रभावशाली संपर्कों के रूप में कार्य करते हैं।

2014-15

लोकप्रिय विज्ञान पत्रिकायें

सीएसआईआर-निस्केयर द्वारा <mark>प्रकाशित की जा</mark> रही लोकप्रिय विज्ञान पत्रिकाएं देश के नागरि<mark>कों के बीच वैज्ञानि</mark>क जानकारी को प्रसारित करने में और वैज्ञानिक जागरूकता को फैलाने में महत्वपूर्ण भूमिका निभा रही है।

मल्टीमीडिया

सीएसआईआर-निस्केयर ने यूरेका कार्यक्रम की पहल की है जिसमें अनुसंधान के क्षेत्र में महत्वपूर्ण उपलब्धियां प्राप्त करने वाले और देश में किसी अनुसंधान संगठन का नेतृत्व करने वाले एक सुप्रसिद्ध वैज्ञानिक से साक्षात्कार किया जाता है। यह साप्ताहिक कार्यक्रम राज्यसभा टीवी चैनल पर प्रत्येक रविवार को प्रसारित किया जा रहा है। विज्ञान प्रसार के सहयोग से इस संस्थान ने पिछले कुछ वर्षों में भारतीय विज्ञान को तराशने वाली दस भारतीय महिला वैज्ञानिकों पर फिल्मों का विकास किया है। इसका प्रसारण लोक सभा टीवी चैनल पर किया जा रहा है।

सेवाएं

सीएसआईआर-निस्केयर को उन सेवार्थियों का समर्थन मिल रहा है जो अनुक्रमणिका, डाटाबेसों का विकास, बिब्लियोमेट्रिक तथा साइंटोमेट्रिक सेवाओं, विदेशी भाषा का अनुवाद, पुस्तकालय स्वचालन तथा वैज्ञानिक प्रकाशनों का मुद्रण जैसी सेवाओं का लाभ उठाने के लिए संस्थान में आते हैं।

1.5 भौतिक विज्ञान

1.5.1 वैज्ञानिक उत्कृष्ट<mark>ता</mark>

ताप ध्वनिक ऊर्जा जनित्र

सीएसआईआर-सीईईआरआई <mark>ने प्रायोगिक अध्य</mark>यनों के उद्देश्यार्थ ताप ध्वनिक ऊर्जा जिनत्र <mark>के प्रयोगशाला संबं</mark>धी आदिप्ररूप का विकास किया है। यह आदिप्ररूप ध्वनिक ऊर्जा के माध्य<mark>म से तापीय</mark> ऊर्जा को विद्युत ऊर्जा में परिवर्तित करता है। यह तापीय-ध्वनिक ऊर्जा संपरिवर्तन सौर ऊर्जा को विशेषतया विकेंद्रीकृत सेटिंग के उपयोग में लाने के लिए एक वैकल्पिक प्रौद्योगिकी उपलब्ध कराता है।

ताप ध्वनिक ऊर्जा जिनत्र विभिन्न नवीकरणीय ऊर्जा स्रोतों जैसे सूर्य का प्रकाश, बायोगैस इत्यादि से व्युत्पन्न ऊष्म ऊर्जा द्वारा संचालित किया जा सकता है। यह जिनत्र सूक्ष्म चैनलों युक्त स्टैक संरचना वाली संवृत्त वाहिनी का होता है। जब स्टैक का एक सिरा गर्म हो जाता है तब दूसरे सिरे पर एक तीव्र आवाज उत्पन्न होती है जिसेलाइनर अल्टरनेटर का उपयोग कर विद्युत में परिवर्तित किया जाता है। सीएसआईआर-सीईईआरआई में निर्मित ताप ध्विनक ऊर्जा जिनत्र आदिप्ररूप को वर्तमान में विद्युत हीटर द्वारा ऊर्जा दी जाती है और यह 150-160dB (1.5 KPa) की उच्च तीव्रता वाली ध्विन तरंगों को उत्पादित करने में सक्षम है। यह ध्विनक ऊर्जा स्पीकर आपेरेटिंग का उपयोग कर माइक्रोफोन मोड में विद्युत ऊर्जा में परिवर्तित की जाती है। ताप-ध्विक डिजाइन का उपयोग करके ऊर्जा उत्पादन का यह प्रथम प्रदर्श है। वर्तमान में इस प्रणाली का इष्टतमीकरण किया जा रहा है ताकि विभिन्न वैकल्पिक नवीकरणीय ऊर्जा स्रोतों से उत्पादित ऊष्मा से परिचालित हो सके।

डिस्पोजेबल pH सेंसर के रूप में ZnO आधारित ईजीएफईटी

एमईएमएस आधारित चिकित्सा नैदानिक प्रणालियों के विकास में डिवाइसों की लागत और प्रयोज्यता दो अनिवार्य आवश्यकताएं हैं। एक्सटेंडेड गेट फील्ड इफेक्ट ट्रांजिस्टर (ईजीएफईटी) विद्युत रूप से वाणिज्यिक एमओएसएफईटी से संयोजित एक विस्तृत हथियार है। यह डिस्पोजेबल भाग ZnO ईजीएफईटी है जो pH मानीटिंग के लिए एक लागत प्रभावी उपकरण है। ZnO एक जैव अनुकूल पदार्थ है और इसलिए यह जैविक संवेदन अनुप्रयोगों हेतु उपयुक्त है। सीएसआईआर-सीईईआरआई ने ZnO का संवेदन फिल्म के रूप में उपयोग करके ईजीएफईटी pH सेंसर का विकास किया। pH संवेदनशीलता \sim 60Mv/pH पर होनी पायी गयी थी। ZnO का नैनोफेज नर्नशियन सीमा से परे उच्च संवेदनशीलता का कारण है।

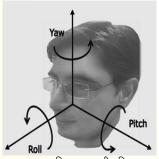
इलेक्ट्रानिक सिरुटम <mark>के हैल्थ मानीटरन हेतु सुटुढ़</mark> एएमएलसीओ प्रणाली

पैकेजिंग की नवोन्मेषी विधि युक्त सुदृढ़ीकृत एएमएलसीओ युग्म वाली परंपरागत कैथोड किरण निकाओं का पुन: स्थानापन और आप्टो मेकैट्रोनिक अभिन्यास सिविल तथा सैन्य धरातल परिवहन संबंधी अनुप्रयोगों के क्षेत्र में अनुप्रयोग वाली परिष्कृत तथा लघु रूप प्रदर्शन प्रणालियों में परिणत हो सकता है। सीएसआईआर-सीएसआईओ ने एएमएलसीओ डिस्प्ले मॉड्यूल के साथ इस प्रणाली के हैल्थ मानीटरन हेतु एक समाविष्ट आदिप्ररूप एक नियंत्रक मॉड्यूल का विकास किया है। इससे सूक्ष्म नियंत्रक तथा संसाधित के बीच 2 वायर वाली संचार लिंक का उपयोग कर विभिन्न संकेतकों की स्थित को प्रदर्शित किया जा सकेगा। एक संचार प्रोटोकॉल भी विकसित किया गया है जो उस प्रारूप को उल्लिखित करता है जिसमें डाटा को इन दोनों लिंक के बीच प्रेषित किया जाता है। यह विकसित प्रणाली तुटि वाली जगह का सही पता करने हेतु पूरे उपकरण को खोलने की आवश्यकता को रोकती है। इस मूल सेटअप में एकल प्रक्रमण मॉड्यूल, डिस्प्ले नियंत्रक तथा डिस्प्ले मॉड्यूल होता है। इस परीक्षण सेट अप में 54 डिजिटल इनपुट और 16 समरूप इनपुट वाला सूक्ष्म नियंत्रक तथा डिजिटल कन्वर्टर हेतु सन्निहित अनुरूप लगा होता है। सभी वोल्टेज संकेतों को प्राप्त कर यह सूक्ष्म नियंत्रक संचार प्रोटोकाल

2014-15

द्वारा निर्धारित स्टैंडर्ड डाटा आकार में नियंत्रक एवं डिस्प्ले स्क्रीन नियंत्रक के बीच अंत:स्थापित करता है जो एएमएलसीओ के वोल्टेज को प्रदर्शित करता है। यह सूक्ष्म नियंत्रक वोल्टेजों को पढ़ता है, उनकी जोड़-तोड़ करता है तथा उन्हें निर्दिष्ट प्रोटोकॉल के अनुसार 2-वाइट वाली क्रमिक संप्रेषण लिंक के माध्यम से ग्राफिक्स नियंत्रक को भेजता है। परिणाम स्वरूप, प्रोसेसर आने वाले वोल्टेज को डिस्प्ले स्क्रीन पर पूर्व में डिजाइन किए गए प्ररूप में प्रदर्शित करता है। यह डिस्प्ले स्क्रीन दो पूर्व डिजाइन की गई मशीनों डिजिट्स तथा एलईओ, प्रत्येक का अपना यूनिक कोड होता है, पर सूचना प्रदर्शित करती है। यह एलईओ और डिजिट्स एक साथ ग्राफीय यूजर अंतराक्षेप तैयार करते हैं जो यूजर को एएमएलसीओ के उपकरण के त्रुटिपूर्ण मॉड्यूल के बारे में पहली नजर में जाने के लिए सक्षम बनाता है।

एजेटी/एचजेटी 36 कार्यक्रम हेतुहैड अप डिस्प्ले सिस्टम की डिजाइन, विकास तथा आपूर्ति


सीएसआईआर-सीएसआईओ द्वारा विकसित हैडअप डिस्प्ले (एचयूडी) सिस्टम्स का वीडियो निष्पादकता में सुधार लाने और प्रतीकात्मक विकृति तथा शोर कम करने, विलेपन के विविध जोनों के अभिरूप में द्वितीयक बीम संयोजक विलेपन में डिजाइन परिवर्तन करने के लिए एकल प्रक्रमण कार्ड में आशोधन तथा अंतिम एचयूडी डिस्प्ले में चमक संबंधी विभिन्नता हटाने के लिए एचयूडी यूनिट एच005 (एमओडी3) के एसओपी के अनुसार फोल्डिंग मिरर में आशोधन करने हेतु अतिरिक्त इष्टतमीकृत किया गया। यूएफसीपी और आरडीईपी से प्रकाश क्षरण की समस्या का समाधान मुख्य तथा रोटरी नोब्स में तात्कालिक पैडिंग के माध्यम से कर दिया गया है। इसके साथ ही, अब लीजेंड्स को यूएफसीपी तथा आरडीईपी की बैकलाइट के साथ सिम्मिलत किया गया है तािक विमान के दिन रात के संचालन में लीजेंड्स की एकरूप और पूर्ण विपर्यास दृश्यता लाई जा सके। प्रदीप्ति स्तर को विमान के मुख्य दीित मंदक नियंत्रण द्वारा नियंत्रित किया जाता है। एचयूडी माउंटिंग ट्रे डिजाइन को आशोधित एचजेटी-36 एएलसी प्लेटफार्म के अनुसार आशोधित किया गया है। इससे एचयूडी का लगाना तथा अपनयन प्रक्रिया भी बेहतर हुई। इस माउंटिंग ट्रे का मूल्यांकन फलाइट आपरेशन (एफडब्ल्यू) पाइलट द्वारा एचयूडी-एचजेटी प्लेटफार्म पर एचयूडी माउंट के साथ किया गया और इसे विमान में आगे के उपयोग हेतु पास किया गया है। एचयूडी के टॉप कवर की आक्लान परिसज्जा बनायी गई है तािक एचयूडी टॉप कवर की स्वर्य परावर्तन से बचाया जा सके।

भवन ऊर्जा प्रबंधन संबंधी प्रणाली (बीईएमएस)

सीएसआईआर-सीएसआईओ ने भवनों के लिए प्रमाणित नेटवर्किंग वास्तुकला वाली भवन ऊर्जा प्रबंधन संबंधी प्रणाली (बीईएमएम) का विकास किया है। बीईएमएस का लक्ष्य भवन के अंदर तथा बाहर ऊर्जा एवं भौतिक प्राचलों को मापना है और यह ऊर्जा उपभोग तथा अनुकूल स्थितियों के साथ इसके संबंधपर रिपोर्ट तैयार करता है ताकि ऊर्जा बचाने को उपाय कियेजा सकें।यह मानकों को पूरा करने के लिए इसकी प्रयोजनीयता तथा ऊर्जा दक्षता के लिए बीईएमएस में प्रयुक्त इस उपकरण के परीक्षण हेतु सहायता भी उपलब्ध कराता है। यह मुख्यत्या ऊर्जा हेतु मापनप्रणाली और पर्यावरिक प्राचलों, एलओएन/एमओडी-बीयूएस प्रोटोकाल के द्वारा मापन प्रणाली से सर्वर तक डाटा अंतरण, इंटरनेट, डाटा स्टोरेज तथा उपयोगिता नियंत्रण हेतु एलएस के अनुसार होता है। इस प्रणाली का आदिप्ररूप सीएसआईआर-सीएसआईओ के चेन्नै केन्द्र पर अधिष्ठापित कर दिया गया है ताकि इस प्रणाली को दो कक्षों; एक ऊर्जा दक्ष फिटिंग वाले तथा अन्य परंपरागत फिटिंग वाले में प्रदर्शित किया जा सके। नियंत्रण का परीक्षण किया गया और भवनों में ऊर्जा उपयोग पर मौसम संबंधी प्राचलों का प्रभाव ढूंढने के लिए अध्ययन शुरू किए गए हैं।

मशीन विजन (कैमरा) आधारित सिर/गर्दन की गति से नियंत्रित व्हील चेयर

सीएसआईआर-सीएसआईओ ने बारहवीं पंचवर्षीय योजना की परियोजना 'ओमेगा' के तहत कैमरा आधारित सिर/गर्दन की गित से नियंत्रित व्हील चेयर के आदिप्ररूप का विकास किया है जो गर्दन से नीचे के पूरे शरीर के पूर्ण पक्षघात वाले लोगों द्वारा उपयोग में लाई जा सकती है जिनके सिर्फ गर्दन/सिर ही गित करते हैं। इस कस्टमाइज्ड व्हील चेयर के कौशल के लिए नियंत्रण सिग्नल्स मशीन विजन सिस्टम के इस्तेमाल से सिर/गर्दन की गित का पता लगाकर सृजित किए जाते हैं। इन कंट्रोल सिग्नल्स को व्हील चेयर की मोटर्स की गित को नियंत्रित करने के लिए मोशन कंट्रोलर को भेजे जाते हैं। व्हील चेयर की दिशा और गित नियंत्रण गर्दन की गित के घुमाने और स्थिर करने से क्रियान्वित किए जाते हैं। माइक्रो कंट्रोलर के इस्तेमाल से विकसित गित नियंत्रण और मोटर ड्राइवर्स की व्यावसायिक रूप से उपलब्ध पावर्ड व्हील चेयर पर जांच की जा रही है।

चित्र: 148 मशीन विजन पर आधारित हेड ट्रैकिंग सैट-अप

2014-15

ऑप्टिकल टाइम डिविजन रिफ्लेक्टोमीटरी

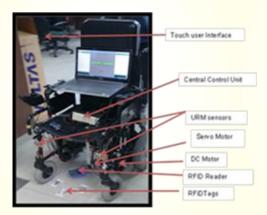
सीएसआईआर-सीएसआईओ ने स्थल भूस्खलन गतिविधि को मॉनीटर करने के लिए ऑप्टिकल टाइम डिविजन रिफ्लेक्टोमीटरी (ओटीडीआर) क्षेत्र तकनीक को विकसित एवं प्रदर्शित किया है। यह सस्ती, पारंपरिक विधियों से कम समय लेने वाली है और एकाधिक स्थानों पर दूरस्थ मॉनीटरिंग किए जाने के लिए है। आपदारोधी आश्रयों के लिए यह प्रौद्योगिकी स्थापित कर दी गई है।

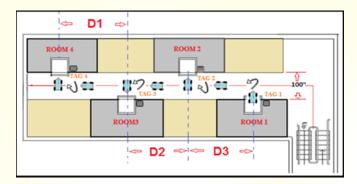
बायो सिरामिक ग्रिंडिंग एवं पॉलिशिंग प्रौद्योगिकी

सीएसआईआर-सीएसआईओ ने बायो सिरामिक ग्रिंडिंग एवं पॉलिशिंग प्रौद्योगिकी विकसित की है तथा नवीन डिजाइन के आधार पर उपकरण का निर्माण किया है। इस प्रौद्योगिकी के उपयोग से ऑथॉपेडिक इम्प्लांट्स के अनुप्रयोगों के लिए सुपरइलैस्टिक NiTi शेप मेमोरी ऐलॉय वायर्स का विकास एवं निर्माण किया गया है जिनका निर्माण करना अत्यधिक कठिन है।

स्पर्श आधारित अंगुली संकेत नियंत्रित व्हील चेयर

स्पर्श आधारित अंगुली संकेत नियंत्रित व्हील चेयर उन लोगों के द्वारा प्रयोग की जा सकती है जो मोटर संचालित करने में निशक्त हैं और उनके कमजोर अंगों के कारण वे व्हील चेयर की जॉय स्टिक को पकड़ने में असमर्थ हैं। व्हील चेयर को चलाने के लिए कैपेसिटिव टच स्क्रीन पर अंगुली स्लाइड करने से नियंत्रण सिग्नल उत्पन्न होते हैं। उचित अनुकूलन किए जाने के पश्चात नियंत्रण सिग्नलों का उपयोग रोगी की गाड़ी की दिशा एवं गित को नियंत्रित करने के लिए किया जाता है। बारहवीं पंचवर्षीय योजना की परियोजना 'ओएमईजीए' (ओमेगा) के अंतर्गत सीएसआईआर-सीएसआईओ ने पक्षाघात और कमजोर अंग रोगियों के लिए अंगुली स्पर्श/अंगुली संकेत नियंत्रित व्हील चेयर का आदिप्ररूप विकसित किया है। गित नियंत्रण ऐल्गोरिथ्म हेतु घरेलू परीक्षण किए जा रहे हैं।


चित्र: 149 स्पर्श आधारित अंगुली संकेत नियंत्रित व्हील चेयर


2014-15

रोगी व्हील चेयर का स्वायत्त मार्गनिर्देशन

अस्पताल में रोगी के स्वायत्त निर्देशन से श्रमिकों की कमी इन-हाउस रोगियों के स्वतः संचलन और होने वाले समय विलम्बों के कम होने से अस्पताल की प्रकार्यात्मक क्षमता में सुधार हो सकता है। अतः स्वायत्त मार्गदर्शन हेतु पूर्णतः स्वचालित सेंसर उटा कैण्चर एवं प्रोसेसिंग प्रणाली की आवश्यकता महसूस की गई। बारहवीं पंचवर्षीय योजना की परियोजना 'ओएमईजीए' (ओमंगा) के अंतर्गत सीएसआईआर-सीएसआईओ ने एक स्वायत्त मार्गनिर्देशित रोगी वहील चेयर इंटलीजेंस के आदिप्ररूप का विकास किया है जो कि केन्द्रीयकृत नियंत्रण प्रणाली के साथ प्रणाली की मेमोरी में विशिष्ट कार्य क्षेत्र के मार्गनिर्देशित मानचित्र को स्टोर करके वायलैस आरएफआईडी सम्प्रेषण तकनीक के माध्यम से लागू की जा रही है। स्थान का अभिनिर्धारण गलियारे की दीवारों और रोगी की गाड़ी पर लगाए गए आरएफआईडी टैम्स पर आधारित होता है। स्वचालित सेंसर डेटा कैण्चर और प्रोसेसिंग यूनिट मार्गनिर्देशन के दौरान आने वाले अवरोधों पर नजर रखता है। मास्टर-स्लेव समाकृति में परस्पर का पूरक होने के लिए दो 8-बिट सूक्ष्म नियंत्रक समान्तर मोड में कार्य करते हैं। एक नियंत्रक अवरोधों को रोकने का कार्य करता है जबकि दूसरा क्रमिक अन्तरापृष्ठ के माध्यम से परस्पर संप्रेषण स्थापित करते हुए मार्गनिर्देशन के लिए होता है। इस प्रणाली में इंटरेक्टर ग्राफिकल यूसर इन्टरफेस (अन्तरापृष्ठ) है। निरूद्ध वातावरण में गाड़ी की वांछित गति के लिए विभिन्न संकेतों जैसे कि फॉरवर्ड, रिवर्स, राइट, लेफ्ट, स्लाइट राइट, स्लाइट लेफ्ट और हार्ड स्टॉप को दायीं एवं बार्ड मोटरों को दिए जाते हैं। कीबोर्ड इनपुट, छ: अल्ट्रासॉनिक सेन्सिंग मॉड्यूल्स और आरएफआईडी टैम्स ग्रुप पर आधारित रोगी वाहन के स्वायत्त मार्गनिर्देशन हेतु नियंत्रण ऐलगारिष्टम को पावर्ड व्हील चेयर पर विकसित एवं परीक्षित किया गया है। वर्तमान में मार्गनिर्देशन को प्रत्येक कक्ष के प्रवेश पर अर्दुचन्द्राकार तरह के पैटर्न में निष्क्रय टैम्सके चार समूहों को लगाकर और अवलोकन सारिणी में संभावित मार्गों को संचित करने के जिएए फ्लोरमैप (मानचित्र) के अनुसार परीक्षण किया जा रहा है। प्रति कक्ष 6-8 कार्ड्स के अर्दुचन्द्राकार के पैटर्न ने स्वोज प्रक्रिया में आवश्यक टैम्स की संक्रम बनाया है।

चित्र : 1.50 स्वायत्त मार्गनिर्देशन एवं गति नियंत्रण हेत् नियंत्रण प्रणाली

चित्र : 1.51 फ्लोर मैप एवं आरएफआईडी टैग्स का स्थापन

एम 8.7 शिलांग 1897 भूकंप परिदृश्यः उत्तर-पूर्व बहु-राज्य तैयारी अभियान

8.7 के परिमाण वाले जबरदस्त भूकंप की आवर्ती के कारण संभावित हानि और क्षित की अति संवेदनशीलता के लिए उत्तर पूर्व के लोगों को जागरूक और सतर्क करने के लिए सीएसआईआर-एनईआईएसटी द्वारा आइसोसिस्मल जोनल-III में असुरक्षित जनसमुदाय स्थापित किए गए। सत्तर पृथ्वी प्रकंप (त्वरण) और भवन किस्मों के आधार पर सभी 8 उत्तर-पूर्वी राज्यों/जिलों में जोखिम वाले जनसमुदाय का मूल्यांकन करने के लिए भूकंपों से असुरक्षित

2014-15

घरों की गणना की। एमएस के XII-VIII के समकक्ष आइसोसिस्टस I-III में लगभग सम्पूर्ण उत्तर पूर्व भारत सम्मिलित है। भूकंप जोखिम शमन; क्षमता विकास कार्यक्रम संबंधी लोगों में जागरूकता लाने के लिए बिल्डिंग्स एवम् लाइफलाइन स्ट्रक्चर्स की रेपिड विजुअल स्क्रीनिंग विषयक प्रशिक्षण; मेगा मॉक अभ्यास और स्कूली बच्चों को जागरूक करने सम्बन्धी कार्यक्रमों का आयोजन किया गया।

गंभीर रूप से उत्पन्न भूकंप घटना पर ज्वारीय बल का प्रभाव

भूकम्प क्रियाविधि में जटिलता विभिन्न प्रकारों जैसे कि आंशिक वितरण, भूकंपनीयता की क्लस्टिरंग आदि से प्रकट होती है और गंभीर घटना के रूप में देखी जाती है। भूकंप की घटनायें साधारणतय: मितस्थायी संतुलन को दर्शाती हैं। अंडमान-सुमात्रा सबडक्शन क्षेत्र विश्व में भूकम्प की दृष्टि से अत्यधिक सिक्रय सीमान्त क्षेत्रों (संभवत: मितस्थायी अवस्था में) में से एक है। हाल ही में इस क्षेत्र ने 8.5 से अधिक मैग्नीट्यूट के तीन प्रमुख भूकंपों का सामना किया (26 दिसम्बर 2004 को एम ~ 9.1; 28 मार्च, 2005 को एम ~ 8.6; 11 अप्रैल, 2012 को एम ~ 8.6)। अनुसंधानकर्ताओं ने इस क्षेत्र में भूकंप आने के एकाधिक कारणों को व्यक्त किया जिनमें से एक कारण भूकंप के साथ ज्वारीय प्रतिबलों का संभव सहसंबंध है। हालांकि जारी हुए पत्र पर इस वास्तविकता के परिपेक्ष्य में उग्रता से चर्चा की गई कि ज्वारीय बल के कारण उत्पन्न हुआ एक छोटा प्रतिबल इस तरह का बड़ा मैग्नीट्यूड भूकंप नहीं ला सकता। सीएसआईआर-एनजीआरआई ने गंभीर रूप से उत्पन्न भूकंप घटना पर ज्वारीय बल होने के प्रभाव का अध्ययन किया है। 1973 से 2013 के लगभग 40 वर्षों की अविधि के उपलब्ध डाटा का प्रयोग करते हुए भूकंपों के पुन: घटित होने के समयान्तराल का सांख्यिकीय व्यवहार। सीएसआईआर-एनजीआरआई ने भूकंपों के पुन: घटित होने की गंभीर अवस्था पर लघु ज्वारीय बल होने के प्रभाव के मूल्यांकन हेतु कैटॉस्ट्रॉफी सिद्धांत की अवधारणा का प्रयोग करते हुए सिम्पल इम्पिरिकल टॉय मॉडल का निर्माण किया है। प्लेट मोशन के दौरान हैल्महोल्ट्ज मुक्त ऊर्जा की प्रमुख भूमिका के अतिरिक्त हमारा विश्लेषण, हालांकि मात्र कुछ ''कैटास्ट्रॉफिक - कैऑटिक'' भूकंप घटना को ट्रिगर करने के लिए, सुझाव देता है कि सुमात्रा क्षेत्र में भूकंप का स्थायित्व और संकटपूर्ण व्यवहार ज्वारीय बल के साथ जुड़ा हो सकता है।

शिमोगा ग्रीनस्टोन बेल्ट, धारवाड़ क्रेटन, भारत के निओ-आर्केइअन फेल्सिक ज्वालामुखीय शैल

सीएसआईआर-एनजीआरआई ने भारत में पश्चिमी धारवार क्रेटन के निओआर्केइअन शिमोगा ग्रीनस्टोन टरेन के फेल्सिक ज्वालामुखीय शैलों का अध्ययन किया है जो कि स्ट्रेटीग्राफिकली ऊपरी क्षितिज पर होने वाले रायोलाइट्स द्वारा प्रमुख रूप से दर्शाए गए हैं। शिमोगा रायोलाइट्स कॉग्लोमिरेट्स, क्वार्टजाइट्स, आर्गिलिटेस, लाइमस्टोन्स, चर्ट्स, बसाल्ट्स और इंटरमीडिएट वॉलकैनिक रॉक्स से संबंधित है और स्पष्ट रूप से अभिनिधारित पैकेज का संकेत देते हैं। वागेनकाड़े और शिकारीपुरा क्षेत्रों के रायोलाइट्स आवश्यक खनिजों के रूप में पॉफिराइटी क्षारीय फेल्डस्पार एवं क्वार्ट्ज तथा गौण चरणों के रूप में क्लोराइट, बायोटाइट एवं ओपेक्स सहित पौटेशियमी हैं। भूरासायनिक रूप से ऋणात्मक Nb-Ta, Zr-Hf विषमताओं और घनात्मक Th विषमताओं के साथ, शैल प्रारंभिक आवरण मूल्यों के सापेक्ष LILE में संवर्धन और एचएफएसई में अवक्षय दर्शाते हैं। शिमोगा रायोलाइट्स के इन लक्षणों की सब्डक्शन संबंधित विवर्तनिक सेटिंग्स में उत्पन्न मैम्माज की भूरासायनिक विशेषताओं के साथ भली-भांति तुलना की जा सकती है। उनके एल्कालाइन संयोजन ने La/Yb n (2–28) के साथ निम्न HFSE प्रचुरता के लिए मध्यम और उच्च Zr/Y मूल्यों (1.5–8.3) के लिए अल्प, सुपीरिअर प्रोविन्स, कनाडा के वैबीगून और यूची बैल्ट्स के एफ। और एफ॥ रायोलाइट्स सृदश ऋणात्मक Eu ऐनोमलाइजऔर वैरिएबल एलआरईई/एचआरईई फ्रैक्शनेशन ट्रेप्ड्स को स्पष्ट किया। शिमोगा रायोलाइट्स की व्याख्या गारनेट और ऐम्फीबोल — बियरिंग मैंटल अवशिष्ट के साथ ऐम्फीबोलाइट/ऐक्लोगाइट ग्रेड हेतु कायांतरित मोटी बसाल्टिक क्रस्ट के पिघलने वाले उत्पादों के रूप में की गई है। रायोलाइट्स प्रधान ऋणत्मक Eu एवं ऐनोमलाइज, सशक्त एलआरईई फ्रेक्शनेशन के लिए अल्प, मृतुतापूर्वक प्रभावित एचआरईई पैटन्स के लिए समपरिष्कृत दिखाई देते हैं और भूरासायनिक रूप से मैंटल बेज और शिला घटकों से महत्वपूर्ण सहयोग सहित अन्तरा भूपर्पटी गलनशील और आंशिक क्रिस्टलीकरण के बेसाल्टी तल पदार्थों से उनकी व्युप्तित का संकेत देते हुए सुपीरियर प्रोविस, कनाडा के टाइप १ एवं टाइप ३ रायोलाइट्स समरूप है। हमारे डाटा से पिश्रमी धरवार क्रेटन में महाद्वीपीय पीमांत प्रक्रियाओं के सहयोग का संकेत मिलता है।

उत्तर पश्चिम हिमालय में तिर्यक अभिसरण और ख्लिप विभाजन : जीपीएस मापों से निहितार्थ

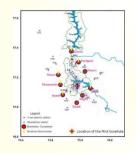
2014-15

सीएसआईआर-एनजीआरआई ने पूरे कश्मीर हिमालय में भूपर्पटी विकृति की जीपीएस मापों को सूचित किया है। काराकोरम भ्रंश प्रणाली से प्राप्त जीपीएस मापों के प्रकाशित परिणामों के साथ इन परिणामों का संयोजन यह संकेत देता है कि संरचनात्मक प्रवाह के संबंध में कश्मीर हिमालय में दिक्षणी तिब्बत और भारत प्लेट के बीच की गित तिर्यक है। हमने यह अनुमानित किया कि प्राय: उत्तर-दिक्षण तिर्यक गित 17±2mm/yr होगी जो कि कश्मीर हिमालयी फ्रन्टल आर्क में प्रवाहित उत्तर पश्चिम-दिक्षण पूर्व में N198°E के दिगंश के साथ काराकोरम भ्रंश प्रणाली पर 5±2 mm/yr की दिक्षणावर्त गित और 13.6± 1mm/yr की तिर्यक गित के बीच में विभाजित है। अत: कश्मीर हिमालयी फ्रन्टल आर्क में भारत दिक्षण तिब्बत तिर्यक गित का विभाजन आंशिक है। हालांकि, निकटस्थ नेपाल हिमालय में कोई विभाजन नहीं है; 19— 20mm/yr की संपूर्ण भारत दिक्षण तिब्बत तिर्यक गित आर्क नार्मल है और हिमालयी फ्रन्टल आर्क में पूर्णत: समायोजित है। कश्मीर फ्रन्टल हिमालय में अभिसरण दर लगभग 25% है जो कि नेपाल हिमालयी क्षेत्र से कम है। यद्यपि, यहां काराकोरम भ्रंश प्रणाली दिक्षणी तिब्बत और भारतीय प्लेट अभिसरण का लगभग 20% समायोजित करती है और उत्तर पश्चिम हिमालयी आर्क स्लीवर की उत्तरी सीमा को लक्ष्य बनाती है। कौरिक चैंगो रिफ्ट, उत्तर-दिक्षण की ओर उन्मुख भूकंपी दृष्टि से सिक्रय क्रॉस-वेज ट्रान्स-टेन्शनल भ्रंश पर परिवर्ती ट्रान्सलेटरी गित उत्पन्न करते हुए स्लीवर को दो भागों में विभाजित करने के लिए प्रकट होता है।

कॉस्मिक स्फेरल्स के विभिन्न प्रकारों से Fe-Ni बीड्स का रसायन एवं शैलविज्ञान : पूर्ववर्ती हेतु निहितार्थ

सीएसआईआर-एनजीआरआई ने हिन्द महासागर के गंभीर सागरी अवसादों (तलछट) से एकत्र किए गए कॉस्मिक स्फेरल्स के सभी तीन (पथरीला, कांच, लोहा) प्रकारों में घटित होने के लिए ${\sf Fe-Ni}$ बीड्स को अवलोकित किया है। कॉस्मिक स्फेरल्स में ${\sf Fe-Ni}$ बीड्स धात् विसंयोजन क्रियाविधियों को समझने के लिए अन्तर्दृष्टि प्रदान <mark>कर सकते हैं और</mark> उनके उच्चतापसह धातु तत्व (RME: P<mark>d को सम्मिलित करते हुए Re, Os, W, Ir, Ru,</mark> Mo, Pt, Rh) संयोजन उनके पूर्ववर्ती उल्कापिंडों का पता लगाने में सहायता कर सकते हैं। हमने ~ 2000 कॉरिमक स्फेरल्स का परीक्षण करने के पश्चात चुने गए कॉस्मिक स्फेर<mark>ल्स के समस्त तीन</mark> मूल प्रकारों में ${
m LA ext{-}ICP ext{-}MS}$ का प्रयोग करते हुए 55 ${
m Fe ext{-}Ni}$ बीड्स के आरएमई संयोजनों का मापन किया है। Fe–Ni बीड्स के आरएमईज़ वाय्मंडलीय प्रवेश के दौरान निर्माण और विभेदन पर अद्वितीय जानकारी प्रदान करते हैं। आरएमईज़ के सान्द्रण में परिवर्तनशीलता प्रवेश <mark>के दौरान धा</mark>त् विसंयोजन में कॉस्मिक स्फेरल्स, वोलाटिलिटी<mark>, प्राप्त</mark> तापमान और दक्षता के प्रारंभिक द्रव्यमान पर निर्भर करती है। बीड्स के CI कॉन्ड्राइट और Os नॉर्मलाइज्ड आरएमई संयोजन एक पैटर्न प्रदर्शित करते हैं जो कि CI कॉन्ड्राइट संयोजन से मिलता-जुलता है। सभी प्रकार के कॉस्मिक स्फेरल्स के Fe-Ni बीड्स में Pd, Fe के समान संघनन तापमान रखने वाला एक अदुर्गलनीय धातु, की उपस्थिति दर्शाती है कि हुआ तापन अपने वाष्पीकरण तापमान से नीचे था । सभी पेरेन्ट बॉडीज में बीड्स का फॉर्मेशन नहीं होता है । विसंयोजित होने हेत् पूर्ववर्ती को धातु को सुकर बनाने के लिए एक निश्चित न्यूनतम आकार और तापमान तक बढ़ने की आवश्यकता होती है। एक पेरेन्ट पार्टिकल, जो कि ${
m Fe-Ni}$ बीड को जोड़ सकता है, $\,$ का न्यूनतम आकार \sim 1 ${
m mm}$ अनुमानित है। यह पदार्थों के आकारों पर व्यवरोधों को नियत करता है जो कि प्रवेश के दौरान अपक्षरित हैं और प्रवेश के दौरान सहद्रव्यमान का क्षय होता है। इसके अतिरिक्त हमारा अध्ययन इंगित करता है कि समस्त तीन मृल प्रकार के कॉस्मिक स्फेरल्स में आरएमई <mark>वितरण प्रतिरूपों पर आधा</mark>रित कॉन्ड्रिटिक उद्गम होता <mark>है । वायुमंडलीय प्रवेश के दौ</mark>रान केवल धातु-संपन्न कार्बनमय कॉन्ड्राइट्स ${
m Fe-Ni}$ बी<mark>ड्स के निर्माण हेतु धातु</mark> की अपेक्षित मात्राएं रखते हैं और <mark>इस प्रक्रिया के दौरान आर</mark>एमईज़ भी इन बीड्स में कुशलतापूर्वक विसंयोजित हो जाती है।

कोयना क्षेत्र, महाराष्ट्र में एक विशिष्ट वेधछिद्र भूकंप-लेखी नेटवर्क


कोयना—वार्ना क्षेत्र में गहन वैज्ञानिक प्रबंधन (ड्रिलिंग) कार्यक्रम के प्रारंभिक चरण के अंतर्गत सीएसआईआर-एनजीआरआई द्वारा 1200 मी. (चित्र 17) से 1520 मी. तक की रेंज की गहराई तक प्रवेधित आठ वेधछिद्रों में एक विशिष्ट वेधछिद्र भूकंपी नेटवर्क का परिनियोजन एक प्रमुख पहल थी। कोयना — वार्ना भूकंपों के हाइपोसेन्ट्रल मापदण्डों के परिशुद्ध निर्धारण के माध्यम से अधस्तल त्रुटि को शुद्धता से अंकित करना इस परिनियोजन के प्रमुख उद्देश्यों में से एक है। उपरिशायी बेसाल्ट परत और बहिस्तल (पृष्ठ) पर उच्च ध्विन स्तर के भी कारण, ब्रॉडबैंड भूकंप-लेखी नेटवर्क के माध्यम से प्राप्त किए गए भूकंप स्थानों की परिशुद्धता में प्रतिबंध है। अत: यह निर्णय लिया गया कि कोयना — वरना क्षेत्र के भूकंप की दृष्टि से सक्रिय भागों को सम्मिलत करते हुए चयिनत स्थानोंपर ग्रेनाइटी बेसमेंट में डेकन ट्रैप्स के माध्यम से प्रवेधित वेधछिद्रों को स्थापित किया जाए। स्थानीय तौरपर बनाए गए ट्राई-पॉड व्हील

2014-15

संयोजन के साथ रासाती, कुण्डी, नायारी और उखालू में कुल 4 वेधछिद्र भूकंपमापियां सफलतापूर्वक स्थापित की गई है। (चित्र 17बी और चित्र 17सी) 20 बहिस्तल (पृष्ठ) भूकंपमापियों सहित 4 वेधछिद्र भूकंपमापियों से बना हुआ कोयना वेधछिद्र भूकंपी नेटवर्क पहले से ही 0.3 तक कम मैग्नीट्यूड (कांतिमान) के साथ सूक्ष्म-भूकंपों की रिकॉर्डिंग कर रहे हैं। 4 बची हुई वेधछिद्र भूकंपमापियों के स्थापन से भूकंप स्थानों की संशोधित परिशुद्धताएं प्राप्त करने की प्रत्याशा की जाती है, क्योंकि वेधछिद्र भूकंपमापियां कठोर शैल आधार पर स्थापित हैं और बहिस्तल (पृष्ठ) एवं बेसाल्ट परत पर प्रवेशित ध्विन से मुक्त हैं। चित्र 17 एक ही स्थान पर एक बहिस्तल भूकंपमापी और एक वेधछिद्र भूकंपमापी पर सूक्ष्म घटना के प्रतिदर्श रिकॉर्ड दर्शाता है।

चित्र 152 : कोयना क्षेत्र, जहां भूकंप-लेखी नेटवर्क स्थापित किया जा रहा है, में प्रवेधित वेधछिद्र : उखालू में ट्राई-पॉड सेटअप का प्रयोग करते हुए स्थापित किया जा रहा एक 4.5Hz, 3- घटक वेधछिद्र सोन्ड (1500 मी) : ~ 1.5 किमी. लम्बे भूकंपमापी के बिल को संभालने के लिए विशेष रूप से डिजाइन किए गए व्हील एवं गियर समुख्ययन

युरेनियम अन्वेषण

सीएसआईआर-एनजीआरआई ने छत्तीसगढ़ अवसादी बेसिन के शिंघोरा ब्लॉक-।। में 11, 355.5 एलकेएम के साथ हेली-बोर्न विद्युत चुम्बकीय, चुम्बकीय और गामा किरण विकिरणमितिक सर्वेक्षणों को प्रस्तुत किया है। इस डाटा का संसाधन प्रगति पर है और परमाणु ऊर्जा विभाग के अंतर्गत परमाणु खनिज निदेशालय (एएमडी) के समक्ष प्रस्तुत करने के लिए इस बेसिन में यूरेनियम समर्थता को महत्व देने वाली एक रिपोर्ट तैयार की जा रही है।

कोच्चि के तटीय क्षेत्रों के भूमि उपयोग/भूमि कवर श्रेणी पर समुद्र तल बढ़ने के परिदृश्यों के निहितार्थ

सीएसआईआर-एनआईओ ने कोच्चि, भारत के तटीय क्षेत्रों के भूमि उपयोग/भूमि कवर श्रीणयों के समुद्र तल के बढ़ने के चढ़ाव परिदृश्यों के निहितार्थ का अध्ययन किया है। इसे जलवायु परिवर्तन अवस्थाओं के अंतर्गत तटीय क्षेत्रों की प्रतिक्रिया का पता लगाने के लिए और विभिन्न समुद्र तल के बढ़ने के परिदृश्यों के साथ संभवत: आप्लावन क्षेत्रों को निर्धारित करने के लिए आरंभ किया था। हालांकि क्षेत्रीय प्रभाव के अनुसार समुद्र तल के बढ़ने की प्रवृत्ति बदलती रहती है, यह अध्ययन न्यूनीकरण के उपायों के महत्व पर प्रकाश डालता है जिस पर इस समय विचार करने की आवश्यकता है। भारत के माननीय प्रधानमंत्री श्री नरेन्द्र मोदी के "स्मार्ट सिटी" के लक्ष्य के लिए भारत के समुद्र तल के साथ कोच्चि को स्मार्ट शहरों में से एक के रूप में नामित किया गया है। यह भारत के अत्यधिक जनसंख्या वाले और तेजी से बढ़ रहे शहरों में से एक है और आधारभूत संरचना संबंधी परियोजनाओं जैसे कि मैट्रो रेल, उद्योगों का स्थापन आदि में करोड़ों डॉलरों का निवेश किया गया हैं। निश्चित रूप से, निकट भविष्य में यह शहर नगरीय प्रभुत्व वाला हो जाएगा। यह अध्ययन जलवायु परिवर्तन प्रभावों द्वारा अप्रभावित पर्यावरण और सामाजिक स्थायी क्षेत्रों को निर्धारित करने के लिए कोचिच प्राधिकारी वर्ग की सहायता करेगा। आप्लावन दृश्य-योजनाओं पर आधारित समुद्र तल चढ़ाव के कारण कोच्चि के आसपास में तटीय क्षेत्रों की प्राकृतिक प्रतिक्रियाओं का पता लगाया गया। डिजिटल उन्नयन मॉडल के साथ उपग्रह बिंब-विधान से तैयार किए गए भूमि उपयोग/भूमि कवर (एलयू/एलसी) के संयोजन द्वारा संभाव्य आवास हानि का प्रमात्रीकरण किया गया था। समुद्र तल चढ़ाव की दो विभिन्न दरों (रेट्स) के लिए दृश्य-योजनाएं तैयार की गई और विस्तार में भेदाता व हानि को सुनिश्चित करने के लिए घटित परिवर्तनों की प्रतिक्रियाएं तैयार की गईं। 1 मी. और 2 मी. उंचाई पर ढकी हुई एलयू/एलसी श्रीणयों ने प्रदर्शित किया कि यह जल एवं शहरी क्षेत्रों का अनुसरण करने वाले वनस्पति मैदानों द्वारा अधिकांश रूप से ढका हुआ था। 1 मी. और 2 मी. की समुद्र तल चढ़ाव परिदृश्यों के लिए

2014-15

भौगोलिक सूचना प्रणाली (जीआईएस) का प्रयोग करते हुए समस्त आप्लावन क्षेत्र क्रमश: 169 km2 और 598 km2 होने का अनुमान लगाया गया। क्रमश: 1 मी. और और 2 मी. समुद्र तल चढ़ाव के लिए 43 km2 एवं 187 km2 पर शहरी क्षेत्रों की हानि का अनुमान लगाया गया जो कि भारत की अत्यधिक घनी आबादी के लिए चौंका देने वाली जानकारी है। अन्य एलयू/एलसी श्रीणयों की मात्रात्मक तुलना ने प्रत्येक आप्लावन दृश्य-योजनाओं के अंतर्गत सार्थक परिवर्तनों को दर्शाया। प्राप्त परिणाम अन्तत: इस वास्तविकता को इंगित करते हैं कि कोच्चि क्षेत्र में समुद्र तल चढ़ाव दृश्य-योजनाएं तटीय जमीन के साथ-साथ भूमि उपयोग एवं भूमि कवर श्रेणियों पर गंभीर प्रभाव डालेंगी। तटीय आप्लावन महासागर के अग्र भाग और भीतरी लक्षणों को दोषपूर्ण छोड़ देगा। इन जल स्तरों में वृद्धि तटीय जल निकास ढलानों को बदलेगी। इन ढलानों में कमी तूफान के कारण आने वाली बाढ़ में वृद्धि करेगी जो कि लवण जल अतिक्रमण को तटीय जलभूतों में बढ़ा सकती है और वाटर टेक्ट्स के बढ़ने को बाध्य करती है। जनसंख्या वृद्धि और विकास दबाव के कारण आप्लावन से उत्पन्न हुए मसले के साथ संबंधित तटीय जमीनों में परिवर्तन और आने वाले दस वर्षों में तटीय क्षेत्रों का दोषपूर्ण बना रहना जारी रह सकता है। वैज्ञानिक आंकड़ों का प्रयोग करते हुए जलवायु परिवर्तन का मूल्यांकन नवीन ज्ञान सृजित करता है। अनुकूलन की प्रक्रिया नवीनतम प्रौद्योगिकियों के साथ-साथ पारंपरिक ज्ञान को सम्मिलत करती है। समस्त संभाव्य आप्लावन क्षेत्र, उनका भूमि उपयोग, भूमि कवर, भविष्य की विस्तार योजनाएं और वर्तमान परिस्थिति का मूल्यांकन अनुकूली प्रबंधन की युक्ति निकालने में सहायता करेंगे। सुरक्षात्मक नियोजन भविष्य की बहुत सारी परेशानियों को कम करेगा। समुद्र तल चढ़ाव परिस्थितियों के लिए अनुकूलन को समाकलित तटीय क्षेत्र प्रबंधन परियोजनों के संशोधित प्रारुपों के साथ जाना चाहिए। अधिकांशतः इस क्षेत्र में कृषि संबंधी भूमि, नगरीय क्षेत्र और वनस्पति क्षेत्र प्रभावित हुए हैं। वैकल्पक या संशोधित कृषि पद्धित, शुद्ध जल के लिए सुरक्षा उपाय और नगरीय एवं औद्योगिक क्षेत्रों के प्रबंधन को तत्काल आरंभ किया जाना चाहिए।

शरद ऋतु-2014 के दौरान भारत बंगाल तथा की खाड़ी के विभिन्न पर्यावरणों में वायुमंडल संबंधी उत्तम तथा स्थूल मोड वाले एयरोसोल: समन्वित अभियान

सीएसआईआर-एनआईओ ने एक ही साथ भूकेंद्रों (कुल्लू, पटिषाला, दिल्ली अजमेर, आगरा, लखनऊ, वाराणसी, गिरिडीह, कोलकाता, दार्जिलंग, जोरहाट, ईटानगर, इम्फाल, भुवनेश्वर तथा कड़पा) पर मापित मुख्यत भारत के सिंधु गंगा के मैदान और बंगाल की खाड़ी के समुद्री पर्यावरण में 20 जनवरी से 3 फरवरी, 2014 तक की अविध में वितरित किणकीय पदार्थ [पीएम2.5, पीएम 10 आकार के खण्ड तथा पूर्णतया निलंबित किणकीय (टीएसपी)] के द्रव्यमान सांद्रणों को प्रस्तुत किया है। इस अध्ययन का मुख्य उद्देश्य शीत मानसून अविध में कम स्तर वाली उत्तर-पूर्वहवा के प्रवाह के साथ ही बंगाल की खाड़ी में आईजीपी और सम्बद्ध क्षेत्रों के किणकीय (पीएम2.5, पीएम 10 तथा टीएसपी) के महाद्विपीय बिहर्वाह परिमाण निर्धारित करना था। इस वर्तमान अध्ययन से आईजीपी क्षेत्र में एयरोसोल लदान की झलक मिलती है। इस अभियान के दौरान, उच्चतम औसत पीएम 2.5 (187.8+36.5µg m-3, रेंज 125.6-256.2 µg m-3), पीएम 10 (272.6+102.9µg m-3, रेंज 147.6-520.1 µg m-3) तथा टीएसपी ((325.0+71.5µg m-3, रेंज 220.4-536.6 µg m-3) द्रव्यमान सांद्रण मध्य तथा निचले आईजीपी मैदानों में वाराणसी, कोलकाता तथा लखनऊ में रिकार्ड किए गए थे। बंगाल की खाड़ी में लदे इन पीएम 2.5 (औसतन (41.3+119 µg m-3, रेंज 15.0-54.4 µg m-3) पीएम 10 (औसतन 53.9+18.9µg m-3, रेंज 30.1-82.1 µg m-3) तथा टीएसपी (औसत 78.8+29.7µg m-3, रेंज 49.1-184.5 µg m-3) को भू-केंद्रों से तुलना करने योग्य पाया गया था तथा संभाव्य महाद्वीपीय बहिर्वाह का पता चला। महाद्वीपीय क्षेत्र में, उच्चतम पीएम 2.5/पीएम10 अनुपात दिल्ली में रिकार्ड किया गया (0.87)। बंगाल की खाड़ी में (0.77) पीएम2.5/पीएम 10 अनुपात अधिक होना पाया गया तथा यह वाराणसी (0.80) तथा आगरा (0.79) से तुलनीय था।

मानसून के दौरान भारतीय मानसूनी ज्वारनदमुखों में कणिकीय कार्बनिक पदार्थ के स्रोत एवं वितरण

सीएसआईआर-एनआईओ ने मानसून के दौरान कार्बन तथा नाइट्रोजन का विषय और समस्थानिक संघटन का उपयोग से 27 भारतीय ज्वारनदमुखों में किणिकीय कार्बनिक कार्बन (पीओसी) तथा नाइट्रोजन (पीएन) के वितरण एवं स्रोतों की जांच की है। उच्च पादप प्लवक बायोमास को उच्चतर निलंबित पदार्थ प्राप्त करने वालेज्वारनदमुखों से अधिक गहरे प्रकाशीय क्षेत्र वाले ज्वारनदमुखों में देखा गया। डेल्टा 13Cpoc तथा डेल्टा 15 CPN डाटा संकेत करते हैं कि क्रमश: उच्चतर डेल्टा 13Cpoc (-27.9 से -22.6%) और निम्नतर डेल्टा 15 CPN (0.7 से 5.80/00) को उत्तर भारत में देखा गया, उत्तर में 16 0N, तथा निम्नतर डेल्टा 13Cpoc (-31.4 से -28.20/00) तथा उच्चतर डेल्टा 15 CPN (5 से 10.30/00) को दक्षिण भारत स्थित ज्वारनदमुखों में देखा गया। यह दक्षिणी ज्वारनदमुखों की अपेक्षा उत्तर में उच्चतर chl के साथ यह बताते हुए संबद्ध है कि यथावत उत्पादन से पूर्व के POC पूल हेतु महत्वपूर्ण योगदान मिला, जबिक उत्तरवर्ती ज्वारनदमुखों में स्थलीय स्रोत महत्वपूर्ण है। भारतीय उपमहाद्वीप में डेल्टा 15 CPN का अकाशीय वितरण पैटर्न उर्वरक उपभोग के अनुरूप है, जो उत्तर भारत में दक्षिण की तरह दोहरा है जिबक डेल्टा 15 CPOC से पता चलता है कि दक्षिण में यथावत उत्पादन एक प्रधान स्रोत है और उत्तर ज्वारनद मुखों में स्थानीय स्रोत महत्वपूर्ण है। आर माडल के समस्थानिक विश्लेषण पर आधारित, जैविक पदार्थ का 40-90% (70-90%) योगदान सी3 पादपों द्वारा उत्तर (दिक्षण) भारत की ज्वारनद मुखों में दिया जाता है।

2014-15

हाइपॉक्सिआ के फैलने के कारण अरब सागर में नॉक्टील्युका सिन्टीलैंस के स्थूल प्रकोप का होना

गत दशक में, उत्तरी अरब सागर शीत पादपप्लवक पुष्प पुंजो के सिम्मलन में मूल विस्थापन का साक्षी रहा है जो पूर्व में मुख्यतया पोषक समृद्ध समुद्रो द्वारा संवहनी मिश्रण से सहाययुक्त डाइटम, एक कोशिकीय, सिलिकामय प्रकाश संलिष्ट जीवों द्वारा बना है। इन उष्ण किटबंधीय महत्वपूर्ण डायटम पुष्प पुंजों को बड़े हरे डाइनफ्लैजलेट, नॉक्टील्यूका सिंटीलैंस के दूर-दूर तक फैले पुष्प पुंजोंद्वारा प्रतिस्थापित किया गया है जो प्रे अंतर्ग्रहण वाले अंत:सहजीवकों युक्त इसके क्लोरोफिल से कार्बन स्थिरण को सिम्मलित करता है। सीएसआईआर-एनआईओने बताया कि शीत ऋतु के दौरान एन सिंटीलैंस के इन स्थूल प्रकापों को ऑक्सीजन की कमी वाले सागरों के अनोखे प्रवाह द्वारा प्रकाशीय क्षेत्र में और अपनी एंडोसिबाइंट पेंडिनोमोनस नॉक्टिल्युका की असाधारण योग्यता से सुगम बनाया जा रहा है तािक हाइपॉक्सिक स्थितियों के अंतर्गत अन्य पादप प्लवक की अपेक्षा कार्बन को और दक्षापूर्वक निर्धारित किया जा सके। सीएसआईआर-एनआईओ ने दावे के साथ कहा कि एन सिंटीलैंस ब्लूम्स क्षेत्रीय मत्स्य पालनों और लगभग 120 मिलियन तटीय लोगों के लिए सहायक लम्बी अविध वाला स्वस्थ परितंत्र को हािन पहुंचाने के लिए पारंपरिक डाइटम-सस्टेन्ड खाद्य श्रंखला को बािधत कर सकता है।

वैरिट्राइओल के संश्लेषण के लिए नए विकास: सागर से व्युत्पन्न कवक एमरीसेला वैरीकलर का एक कैंसररोधी कारक

सीएसआईआर-एनआईओ ने वैरिट्राइओल के संश्लेषण के लिए नए विकास की समीक्षा की है। समुद्री प्राकृतिक उत्पाद अपने दुर्लभ संरचनात्मक सत्ताओं तथा विभिन्न जीव विज्ञान संबंधी गतिविधियों के कारण औषध विकास के लाभदायक स्रोत के रूप में मान्यता प्राप्त है तथा इस कारण से बहुत से उपापचयजों को नई औषधियों के रूप में प्रकाशित किया। यद्यपि समुद्री स्रोतों से नए जैव सिक्रय अणुओं के अभिनिर्धारण करने में व्यापक प्रगति की गई है फिर भी फिर भी औषधीय अनुप्रयोगों हेतु इन नए अणुओं की खोज के प्रयास अत्यावश्यक हैं। समुद्री कवक प्राकृतिक उत्पादों के महत्वपूर्ण स्रोतों में एक हैं जो जैविक गतिविधियों की व्यापक रेंज को प्रदर्शित करतेहैं। समुद्री कवक एमरीसेला वैरीकलर से पृथक (+)- वैरिट्रियल ने कैंसर सेल संबंधी रेखाओं की विविधता में विषाक्तता पर 100 गुना अधिक शक्ति दर्शायी है। इसलिए (+)- वैरिट्रियल, कैंसररोधी समुद्री प्राकृतिक उत्पाद पिछले दशक से कुल संश्लेषण का एक आकर्षित लक्ष्य रहा है। अपनी जैविक गतिविधियों के साथ संयोजित नए तरीकों को विकसित करने की बहुत सी विधियां निकल आयी हैं। लेकिन केवल सीमित अनुरूपों का संश्लेषण तथा मूल्यांकन उनकी जैविक गतिविधियों के लिए किया गया है। इसलिए वैरिट्रियल के ऐरोमैटिक भाग और शर्करा के आधा भाग में संशोधन करने माँग अभी भी है जो अतिरिक्त एसएआर अध्ययन हेतु अवसर उपलब्ध करा सकता है जिससे कि मुख्य कैंसररोधी कारकोंहेतुसंभावनाका पता लगा सके। यह समीक्षावैरिट्रियल के संश्लेषणार्थ विकसित विभिन्न रणनीतियों एवं 2002से आज तक के वैश्विक साहित्य के विभिन्न प्रयोगशालाओं के रूपों का वर्णन करती है। चुनौती पूर्ण एवं आधुनिक प्रणाली के रिंग का निर्माणऔर एवजी स्टाइरीन व्युत्पन्न अधिकतर बताए गए संक्षिष्ट प्रयासों के महत्वपूर्ण कदम हैं।

मैग्नेटिक डोपिंग के द्वार<mark>ा सुपरकंडक्टर-फैरोमैग्नेट</mark> कंपोजिट फिल्मों में टेलरिंग फेज स्<mark>लिप इवेंट्स</mark>

अधिचालकता (एससी) तथा लोह-चुंबकल्व (एफएम) को एक साथ अंत:स्थापित करने पर दोनों के बीच की अन्योन्यक्रिया ने इन दो परिघटनाओं के बहुत दुर्लभ सहअस्तित्व के कारण अनोखे अनुसंधान हित को आकृष्ट किया है। इस फोकस को मुख्यतया समीप्य प्रेरित प्रभाव जैसे चुंबकत्व तथा अधिचालकता का सह अस्तित्व, उच्चतर मुख्य धारा, त्रिज अधिचालकता आदि में कार्यान्वित किया जा रहा है। तथापि, कंपोजिट फिल्म्स (सीएफएस) में ट्रिगरिंगफेज स्लिप प्रक्रमों पर चुंबकीय घटक की भूमिकापर प्रायोगिक तौर पर कोई ध्यान नहींदिया गया। सीएसआईआर-एनपीएल ने प्रदर्शित किया है कि सीएफमें 1% से कम चुंबकीय योगदान फेज स्लिप इवेंट को दक्षतापूर्वक शुरू कर सकता है। अत्याधुनिक विरचन संबंधी तकनीकियों के कारण, फेज स्लिप बेस्ड अध्ययन मुख्यतया अतिचालक सूक्ष्म संरचनाओं पर सकेंद्रित किए गए हैं। वैज्ञानिकों ने फेज स्लिप प्रक्रमों के अध्ययन हेतु व्यापक मेसोस्कापिक NbGd आधारित सीएफ लगाए हैं। सीएफ के कम तापमान वाली धारा वोल्टता संबंधी विशेषताएं (आईवीसी) फेज स्लिप इवेंट्ससे व्युत्पन्न सोपानी विशेषताएं दर्शाती हैं और शुद्ध एससी फिल्म्स में नहीं होती है। बायस धारातथा तापमान के आधार पर एब्रिकोसोव टाइप वर्टेक्स एंटीवर्टेक्स (V-aV) युग्मों द्वारा प्रभावी विशिष्ट क्षेत्रों तथा फेज स्लिप इवेंट्स को देखा जाता है। यहां मौजूद इन परिणामों से फेज स्लिप मेकेनिज्म दो आयामों की V-aV युग्म वाली इसकी अन्योन्य क्रिया का मार्ग खुलता है और इसलिए ये भविष्य में फोटानिक तथा मापिकीय अनुप्रयोगों हेतु उपयोगी हो सकते हैं।

Sr 0.5 La 0.5 FBi S2 की अधिचालकता पर द्रवस्थैतिक दाव का प्रभाव

सीएसआईआर-एनपीएल ने हाल ही में खोजे गए 2 K अधिचालक Sr 0.5 La 0.5 FBi S2 की अधिचालकता द्रवस्थैतिक दाब (0-1.97) जीपी) के प्रभाव के बारे में बताया है। दाब मापन के अन्तर्गत प्रतिरोधकता को क्वांटम डिजाइन डीसी प्रतिरोधकता संबंधी विकल्प वाली एचपीसी-33 पिस्टन जैसी दाब कोशिका के उपयोग से पूरा किया जाता है। अधिचालन संक्रमण तापमान (टीसी) को 1 जीपीए से अधिक दाब के साथ लगभग 10 K हेतु 5 गुना तक बढ़ाया जाता है, जो 1.97 जीपीए तक के यत्नज उच्चतर दाब हेतु लगभग एक सा बना रहता है। टीसी में यह पांच गुना वृद्धि Sr 0.5 La 0.5 FBi S2 की सामान्य अवस्था प्रतिरोधकतामें कमी के साथ 1 जीपीए से अधिक दाब के साथ ठोस अवस्था भौतिकी समुदाय का ध्यान आकर्षण करती है।

2014-15

लंब विषमदैशिकता संबंधी सीओ/पीडी बहुपरतों के सुक्ष्म वलयों में क्रमित आघूणों का उत्क्रमण एवं ऊष्मीय स्थिरता

अल्ट्राधिन (Pd-/co-परत की स्थूलता \sim 0.5/0.25 nm) co/Pd बहुपरतों से बने वलय व्यूह के चुंबकीय गुणों की जानकारी दी है। चुंबकीकरण लूपों की क्रमबद्ध जांच विभिन्न तापमान (T=3.300k) और चुंबकीय विश्रांतियों (T=300k) पर प्लेन फिल्म तथा 660, 500 एवं 340 nm की चौड़ाई विभिन्न रिंग वाले रिंग एरेज में की गई। इन सभी सैम्पलोंक एम (एच) लूप स्वतंत्र क्षेत्र के वॉल मोशन को जोड़ने के बाद उत्क्रम क्षेत्र के नाभिकन द्वारा सुगम कराए गए एनिसोट्रॉपी वितरण, उत्क्रमण मिकेनिज्म और तापीय रूप से स्थिन Ub/kT>250 सहित अवशेषों की स्थित (T=300k जहां Ub सिक्रयन व्यवरोध है) को दर्शात हैं; एनिसोट्रॉपी वितरण और पिनिंग दोनों =100k से नीचे के उत्क्रमण क्षेत्र के खड़े क्षेत्र के साथ-साथ सूक्ष्म संरचनाओं में वृद्धि करने के लिए पाए जाते हैं। रासायनिक रूप से तीक्ष्ण/अव्यवस्थित अंतरापृष्ठ संबंधी क्षेत्रों के होने और co/Pd बहु परतों में इंटर-लेयर अंत:क्रिया पर इन परिणामों पर विचार-विमर्श किया जाता है।

1.5.3 विकसित प्रौद्योगिकी

कॉकोनट चिप्स में नमी की ऑन-लाइन माप हेतु नमी संवेदक

सीएसआईआर-सीईईआरआई ने मेसर्स मैरिको, पुदूचेरी में कोप्रा के नमी अवयव के ऑन-लाइन मूल्यांकन का विकास किया है। अधिक नमी वाला अवयव कोप्रा को कवक और घातक आक्रमण के लिए सुभेद्य बनाता है। एनआईआरएस फिल्टर टाइप मॉइस्चर सेंसर सिस्टम को समनुरुप बनाया गया और वायरलैस ट्रांस्मीटर/रिसीवर्स और उपयुक्त रिपीटर्स से संवर्धित किया गया तािक दूरस्थ पीसी के मापे गए आंकड़ा की सूचना नियंत्रण कक्ष में दी जा सके। यह सिस्टम मेसर्स मैरिको लि. में अधिष्ठापित और चालू किया गया और इसका कार्यकरण संतुष्टिपूर्ण पाया गया है। फीड बैक के आधार पर यह सिस्टम उपयुक्त रूप से आशोधित किया जाएगा और ऑन-लाइन माप एवम् नियंत्रण हेतु उन्नत बनाया जाएगा।

सिद्धार्थ-III:6V मेडिकल लाइनैक

माननीय केंद्रीय मंत्री डॉ. हर्ष <mark>वर्धन ने अगस्त 2</mark>6, 2014 को इंडियन इंस्टिट्यूट ऑव हेड एंड नैक ऑन कोलॉजी (आईआईएचएनओ), इंदौर में सीएसआईआर-सीएसआईओ <mark>द्वारा विकसित</mark> सिद्धार्थ-III 6 MV मेडिकल लाइनैक मशीन <mark>का शुभारम्भ ।</mark>

दिल्ली मेट्रो के लिए भूकंपीय चेतावनी प्रणाली

सीएसआईआर-सीएसआईओ ने भूकंप चेतावनी संकेतक सृजित करने दिल्ली मेट्रो को बचाने के लिए पांच प्रणालियों की संरचना का प्रस्ताव रखा है। इन चार नोडों को मेट्रो नेटवर्क के विभिन्न कोनों पर स्थापित किया गया है तािक इस क्षेत्र में आने वाले विभिन्न भूकंपों को प्रग्रहण करने के लिए चेतावनी संकेतक सृजित किए जा सकें। इन सभी चारोंनोडों को डीएमआरसी एलएएन नेटवर्क से जोड़ा गया है। डीएमआरसी मेट्रो के कोनेपर स्थापित ये नोडेंपीजीए मान के मानदंड को संतुष्ट करते हुए शुरु होंगी और चेतावनी संकेतक सृजित करेंगी। इसिलए 21 अगस्त, 2013 को दिल्ली मेट्रो के लिए भूकंप चेतावनी प्रणाली और वर्ष 2014-15 के दौरान भूकंप चेतावनी हेतु रियल टाइम भूकंपी घटना संसूचन संबंधी तकनीक हेतु दिल्ली मेट्रो रेल कारपोरेशन (डीएमआरसी) नई दिल्ली के साथ हस्ताक्षरित इस करार के लिए तकनीक की डिजाइन एवं विकास किया गया है। इस तकनीक को K-NET (क्योशिन नेटवर्क), जापान से भूकंप डाटा और काइनेमेट्रिक्स इंक से बेसाल्ट त्वरण लेखी के उपयोग से राष्ट्रीय राजधानी क्षेत्र में रिकॉर्डिकए गए भूकंपी डाटा के उपयोग से विधिमान्य बनाया गया है। भूकंपी संवेदन नोडों की पांच इकाइयों का अभिकल्पन एवं विकास किया गया है। एप्लीकेशन सॉफ्टवेयर का विकास भूकंपी घटनाओं के डाटा बेस, केंद्रीय लेखीय प्रयोक्ता अंतरापृष्ठ (जीयूआई) के दूरस्थ केंद्रों की स्थिति को संभालने और डीएमआरसी की रिपोर्ट तैयार करने हेतु किया गया है और दिल्ली मेट्रो भवन, नई दिल्ली पर स्थापित किया गया है। चार भूकंपी नोडों को बोटानिकल गार्डन, हुडा सिटी सेंटर, मेट्रो भवन तथा मुंडका पर स्थापित किया गया है और इस प्रणाली का परीक्षण किया जा रहा है।

ड्युअल फेस पॉकेट <mark>ब्रेल राइटर</mark>

सीएसआईआर-सीएसआईओ ने ऐसे ड्युअल फेस पॉकेट ब्रेल राइटर का विकास किया है जो परंपरागृत ब्रेल लेखकों से भिन्न है। इस नवोन्मेषी विचार से द्रश्य बाधित बच्चे ब्रेल पाठ को बांए से दांए लिखना पढ़ना शुरू कर सकते हैं। इससे उनके सीखने की प्रक्रिया तेज होगी। इस डिवाइस को डायरी की तरह जेब में ले जाना उनके लिए और भी आसान है। इस डिवाइस को समाज कल्याण एवं अधिकारिता विभाग, भारत सरकार द्वारा देश के सभी दृश्य बाधितों हेतु संस्थान को उपलब्ध कराई गई सीखने की किट में शामिल किया जा सकता है। दोनों प्रौद्योगिकियों अर्थात कृत्रिम नी ज्वाइंट (हाइड्रोलिक) तथा ड्युअल फेस पॉकेट राइटर की जानकारी मेसर्स ओरियंटल इंजीनियरिंग वर्क्स प्रा.लिमि., यमुना नगर को जुलाई 16, 2014 को क्रमश: रु.2.00 लाख और रु.1.00 लाख के एकमुश्त प्रीमियम पर नान-एक्सक्लूसिव आधार पर 5% रायल्टी के साथ 3 वर्ष के लिए हस्तांतरित की गई है।

हल्के लड़ाकू विमान हेतु बोर साइटिंग सिस्टम

सीएसआईआर-सीएसआईओ ने बोर साइटिंग सिस्टम (बीएसएस) का कस्टम डिजाइन किया है। यह प्रणाली एलसीए-तेजस (एएफ) के लिए विकसित की गई है और इसकी प्रौद्योगिकी को फरवरी, 2015 में भारत इलैक्ट्रोनिक्स लिमिटेड, पंचकुला को हस्तांतरित किया गया है। इसे विमान के कॉकपिट में

2014-15

ऐच्छिक स्थिति पर हैड अप डिस<mark>्प्ले और ऐसी ही</mark> प्रणालियों को अधिष्ठापित और अनुरूप <mark>करने के लिए प्रयोग</mark> किया जाता था। इस वर्ष के दौरान, इसकी डिजाइन, एसेम्बली, परीक्षण, मूल्यांकन, प्रलेखन को सेंटर फॉर मिलिटरी एयरवर्थिनेस रीजनल सेंटर फॉर मिलिटरी एयरवर्थिनेस (सीईएमआईएलएसीआरसीएमए), से प्रमाणन के बाद अंतिम रूप दिया गया और पूराकिया गया।

आर वी सिंधु साधना लांच किया

डॉ. जितेन्द्र सिंह, तत्कालीन उपाध्यक्ष, वैज्ञानिक तथा औद्योगिक अनुसंधान परिषद और माननीय राज्य मंत्री, विज्ञान एवं प्रौद्योगिकी मंत्रालय तथा पृथ्वी विज्ञान मंत्रालय (स्वतंत्र प्रभार), प्रधानमंत्री कार्यालय, लोक शिकायत एवं पेंशन, परमाणु ऊर्जा विभाग, अंतरिक्ष विभाग, ने प्रथम स्वदेश निर्मित बहुविषयी अनुसंधान पोत दिनांक 12 जुलाई, 2014 को राष्ट्र को समर्पित किया।

चित्र 1.53 प्रथम स्वदेश निर्मित अनुसंधान पोत सिंधु साधना राष्ट्र को समर्पित

यह जहाज 80 मीटर लंबा और 17.6 मीटर चौड़ा है और इसमें 29 वैज्ञानिकों और 28 क्रू मेम्बर्स सहित 57 व्यक्ति आ सकते हैं। इस का डिजाइन 13.5 नोट्स की क्रूजिंग स्पीड के लिए किया गया है और यह 45 दिनों तक स्थिर रहता है। इस अनुसंधान पोत में 10 प्रयोगशालाएं हैं जो अत्याधुनिक उपकरणों से लैस हैं जिनसे अति महत्वपूर्ण डाटा और नमूना एकत्र करना सरल है। यह जहाज सिंगल बीम और मल्टी बीम इको सुराउंर्ड्स, वाटर कॉलम और सबबॉटम प्रोफाइलर, ग्रेवीमीटर, मैग्नेटोमीटर, एकॉस्टिक डॉपलर करंट प्रोफाइलर, कंडेक्टिविटी-टेम्प्रेचर-डेप्थ प्रोफाइलर ऑटोनोमस वैदर स्टेशन, एयर कवालिटी मॉनीर्ट्स तथा सैम्पलिंग गियर्स यथा ए-फ्रेम, गामा फ्रेम और सपोर्टिंग क्रेन्स सहित डीप सी विंचेज से ऑन-लाइन डाटा एकत्र करने और डाटा प्रोसेसिंग करने के लिए अनेक प्रयोगशालाओं से सज्जित है। यह पोत डायनेमिक पोजिशनिंग सिस्टम से भी सुसज्जित है जो 24 मीटर लंबे सेडिमेंट कोर्स सहित नमूने के लिए एक बिन्दु पर रोक सकती है। यह निर्मित घाटों पर नियत तैनाती, दूरस्थ परिचालित यानों (आरओवी) को खींचने और ऑटोनोमस अंडरवॉटर व्हीकल्स (एयूवी) को भी सुगम बनाता है।

1.6 सामाजिक लाभार्थ हेतु एस एंड टी अंतराक्षेप

कृषि उत्पादकता और लाभ बढ़ाने के लिए पारंपरिक फसलों के साथ मेन्थॉल मिन्ट की सह-कृषि

पिछले कुछ दशकों से मेन्थॉल मिन्ट की खेती और उत्पादन भारत के किसानों के लिए लाभदायक रहा है। परंतु बाजार में सस्ते दामों पर कृत्रिम मेन्थॉल मिन्ट के आने के बाद प्राकृतिक मेन्थॉल की मांग में कमी होने के कारण यह फसल कम लाभदायक हो गई है। अत: न्यूनतम मूल्य पर प्राकृतिक मेन्थॉल मिन्ट उपजाने की आवश्यकता है। यदि यह फसल मुख्य खाद्य फसलों के साथ अतिरिक्त फसल के रूप में उगाई जाए, मेन्थॉल मिन्ट तेल का उत्पादन मूल्य विशुद्ध इसकी खेती की तुलना में कम किया जा सकता है।

सीएसआईआर-सीमैप (सीआईएमएपी) द्वारा विभिन्न फसल प्रणाली की उत्पादकता और मुनाफे पर रिकार्ड किए गए डाटा ने प्रकट किया कि मेन्थॉल मिन्ट को पारंपरिक खाद्य फसलों जैसे कि गन्ने, मक्के के साथ सफलतापूर्वक उपजाया जा सकता है। प्याज + मेन्थॉल मिन्ट के अंतर्गत निम्नतम मूल्य उत्पादन (रु. 137/किग्रा.) था।

2014-15

तालिका 1. विभिन्न सह-कृषि प्रणाली के अंतर्गत मेन्थॉल मिन्ट के वाष्पशील तेल (सगंध तेल) का उत्पादन मूल्य

फसल प्रणाली	खेती (कृषि) का	मुख्य फसल से	मेन्थॉल मिन्ट तेल	मेन्थॉल मिन्ट तेल	मेन्थॉल मिन्ट तेल	मेन्थॉल मिन्ट तेल
	मूल्य (रु.	होने वाली कुल	की समतुल्य	की पैदावार	की कुल पैदावार	का उत्पादन मूल्य
	हेक्टेयर-1)	आय (किग्रा.	पैदावार (किग्रा.	(किग्रा. हेक्टेयर-	(किग्रा. हेक्टेयर-	(रु. हेक्टेयर-1)
		हेक्टेयर-1)	हेक्टेयर-1)	1)	1)	
केवल मेन्थॉल मिन्ट	54000	-	-	150	150	360.00
गन्ना + मेन्थॉल	78000	156000	223	110	333	234.00
मिन्ट						
वेटिवर + मेन्थॉल	6600	138000	197	140	337	196
मिन्ट						
मक्का (अनाज हेतु)	60000	49000	70	140	210	286.00
+ मेन्थॉल मिन्ट						
मक्का (घोड़ों के	72000	150000	214	140	354	203.00
लिए) + मेन्थॉल						
मिन्ट						
भिण्डी + मेन्थॉल	66000	120000	171	130	301	219.00
मिन्ट						
मूली + मेन्थॉल	78000	250000	357	120	477	164.00
मिन्ट						
प्याज + मेन्थॉल	78000	300000	429	140	569	137.00
मिन्ट						
गेहूँ + मूली +	89000	144000	205	80	285	312.00
मेन्थॉल मिन्ट						
सीडी (पी=0.05)					55.5	50.5

आर्टिमिशिया अनुआ कृषि (खेती) का अर्थशास्त्र

आर्टिमिशिया अनुआ फसल मलेरिया रोधी औषधि के रूप में प्रयोग की जाने वाली आर्टिमिशनिन का एक महत्वपूर्ण स्रोत है। वर्तमान अध्ययन सीएसआईआर-सीमैप (सीआईएमएपी) द्वारा उत्तर प्रदेश में किया गया था। चुने हुए 80 किसानों से लागत पक्ष पर प्रारंभिक डाटा एकत्रित किया गया। यह देखा गया कि कुल परिवर्तनीय लागत रु. 21.84 प्रति हेक्टेयर पाई गई। कृषि (खेती) की लागत का मुख्य भाग मानव श्रम का था। कुल मुनाफा रु. 87.63 प्रति हेक्टेयर थी। 4.01 के लाभ लागत अनुपात के साथ परिवर्तनीय लागत पर अंतिम मुनाफा रु. 65.75 पाया गया था। इस फसल (R2 मूल्य) में अनुमानित संसाधन उपयोग दक्षता 0.907 पाई गई थी जो दर्शाती है कि आर्टिमिशिया अनुआ में 91 प्रतिशत विविधतायें कारण चरों जैसे कि मानव श्रम, बीज व नर्सरी बढ़ोतरी, खाद व उर्वरक और परिवहन प्रभारों से प्रभावित थीं।

2014-15

चित्र: 1.54 मेंथाल पौदीना के खेत में प्रदर्शन का एक दृश्य

जनजातीय किसानों की आय सृजन हेतु एमएपीएस की शुरुआत

दुधवा टाइगर रिजर्व के पास शुरू की गई अन्य परियोजना गतिविधि के अंतर्गत इस क्षेत्र के जनजातीय किसानों के लिए मेंथाल मिंट, आर्टिमिशिया अनुआ, लेमनग्रास, खस, तुलसी, कालमेघ, सतावर और सर्जगंधा की खेती एवं प्रक्रम पहलुओं पर चार प्रशिक्षण कार्यक्रमों का आयोजन किया गया। इस क्षेत्र के सात गांवोंमें किसानों के खेत में 50 से अधिक उक्त फसलों के प्रदर्शन का भी आयोजन किया। इन किसानोंने छोटे प्रदर्शन के माध्यम से रु.1.15 लाख की कीमत का 150 किग्रा. से अधिक मेंथॉल मिंट के तेल का उत्पादन किया। इन प्रदर्शनों से जनजातीय किसानोंमें सगंधीय फसलों की खेती तथा आसवन के लिए विश्वास भरा है और एमएपीएस के अंतर्गत इस क्षेत्र को तैयार किया गया है तािक आने वाले समय में और भी वृद्धि हो सके।

पुष्प जैव-संसाधन (फ्लोरल <mark>बायो-रिसोर्स) के प्रयोग से अगरबत्तियों के निर्माण पर उद्यमी प्रशिक्षण</mark>

सीएसआईआर-सीमैप (सीआईएमएपी) द्वारा पुष्प एवं अन्य जैव-संसाधनों के प्रयोग से अगरबत्तियों के निर्माण पर उद्यमी प्रशिक्षण कार्यक्रमों का आयोजन किया गया। वर्ष के दौरान 90 से अधिक प्रतिभागियों ने भाग लिया। इसी तरह के दो प्रशिक्षण कार्यक्रम 4 अप्रैल, 2014 एवं 18 अक्तूबर, 2014 को चिन्द्रकादेवी मन्दिर के समीप, गांव कठवारा बक्शी का तालाब, लखनऊ स्थित सीएसआईआर- सीमैप (सीआईएमएपी) के महिला उद्यमी प्रशिक्षण सुविधा (डब्ल्यूईटीई) में क्रमश: 16 एवं 40 प्रतिभागियों के लिए आयोजित किया गया। 12 अप्रैल, 2014को गांव कल्ली पश्चिम में एक अन्य कार्यक्रम आयोजित किया गया जिसमें लगभग 20 महिलाओं ने भाग लिया। प्रशिक्षाणियों को अगरबत्तियों को सुगंधित करने और पैक करने के बारे में भी बताया गया तथा उत्पादन एवं क्रय-विक्रय हेत् समूह बनाने के लिए प्रोत्साहित किया गया।

आसवन प्रौद्योगिकी का प्रभाव मूल्यांकन

200 किसानों से लिए गए अन्त:क्रिया अनुसंधान इनपुट्स पर आधारित नवोन्मेषी प्रौद्योगिकी के प्रभाव का मूल्यांकन करने हेतु सीएसआईआर-सीमैप (सीआईएमएपी) द्वारा सर्वेक्षण फीडबैक अध्ययन किए गए। यह अध्ययन पूर्वी उत्तर प्रदेश, पश्चिमी उत्तर प्रदेश और बिहार के किसानों के बीच किए गए। परिणाम विश्लेषण ने निम्नतम निवेशित लागत के साथ बेहतर तेल रिकवरी को प्रदर्शित किया। सीमैप संशोधित क्षेत्र आसवन इकाई ने निम्न उपभोग अवधि (3.25 घंटे), तेली की अधिक रिकवरी (54.6 लीटर), उच्च तेल वसूली प्रतिशत (79.3%) एवं निम्न मूल्य (रु. 346) प्रति शिफ्ट डिस्टिलेशन टाइम के मामलों में बेहतर परिणाम प्रदर्शित किए। परंपरागत ग्रामीण प्रकार और सीमैप आसवन प्रौद्योगिकी के बीच तुलना को स्पष्ट किया गया।

सिम-अस्विका का प्रौद्योगिकी फीडबैक

नवीन विकसित बहु-उपयोगी सुवाह्य आसवन प्रौद्योगिकी के कार्य-निष्पादन सूचकांक का मूल्यांकन उत्तर प्रदेश और बिहार के किसानों के बीच किया गया। ये इकाईयां किसानों को बेची गईं और प्रौद्योगिकी का फीडबैक प्राप्त किया गया। सिम-अस्विका आसवन इकाई को अच्छी किस्म के तेल तथा गुलाब एवं खस जल के उत्पादन हेतु विशेष रूप से डिजाइन किया गया है। इसका प्रयोग मसालों और उच्च स्तर के अन्य सगंध तेलों के निष्कर्षण हेतु भी किया जा सकता है। यह स्टेनलेस स्टील से बनी साधारण कम मूल्य, सुवाह्य, अत्यधिक कार्यदक्ष एवं कम ईंधन की खपत करने वाली आसवन इकाई है। यह इकाई 12 किग्राम. गुलाब के फूलों से 10-15 किग्रा. ताजा गुलाब जल उत्पादित कर सकती है। इस यूनिट की कीमत लगभग 12000/- रु. प्रति यूनिट है। इसे लकड़ी, कृषि अपशिष्ट, द्रवित पैट्रोलियम गैस, कैरोसीन बर्नर्स द्वारा प्रचालित किया जा सकता है। कार्य-निष्पादन रिपोर्ट प्रदर्शित करती है कि

2014-15

सूक्ष्म उद्यमों के विकास में उपयोगिता और गुणवत्ता के संदर्भ में सिम-अस्विका से 95% किसान संतुष्ट हैं। बाराबंकी के समराहा उधोली गांव में एक स्वालंबन समूह बनाया गया है और महिला समूहों ने गुलाब जल के उत्पादन हेतु देसी गुलाब की खेती प्रारंभ कर दी है। यह 10 किग्रा. फूल से 9 लिटर गुलाबजल उत्पादित करता है और रु. 475 खर्च करके रु. 1200/- अर्जित करता है तथा सखी गुलाबर्क नाम के ब्राण्ड के अंतर्गत खुले बाजार में बेचा जा रहा है।

अखिल भारतीय किसान सशक्तीकरण कार्यशाला

''अखिल भारतीय किसान सशक्तीकरण कार्यशाला'' अखिल भारतीय गन्ना किसान संघ के सहयोग से सीएसआईआर-सीएफटीआरआई में 17 अक्टूबर, 2014 को आयोजित की गई। यह कार्यक्रम सीएसआईआर-सीएफटीआरआईद्वारा विकसित प्रौद्योगिकियों को लोकप्रिय बनाने के लिए देश भर के किसानोंको सशक्त बनाने के लिए आयोजित किया गया।

विभिन्न राज्यों से कुल 120 किसानों ने इस कार्यशाला में भाग लिया। गन्ना जूस, शुद्ध नारियल तेल और दाल मील जैसी प्रौद्योगिकियों को तीन सत्रों में प्रदर्शित किया गया। चिया और क्विनोआ की नई किस्में भी जारी की गई। इन नए पादपों को 'सुपरफूड' कहा जाता है और ये वैकल्पिक फसल की खेती और अंतर-फसलों हेतु किसानों की सहायता कर सकते है। इन फसलों के बीज पौष्टिक होते हैं और आहार संबंधी विकारों हेतु महत्वपूर्ण एवं कुपोषण से लड़ने वाले होते हैं। ये प्रोटीन, अत्यधिक फाइबर, आयरन, मैग्नेशियम तथा राइबोफ्लेविन से भरपूर होते हैं। चिया बीज ओमेगा 3 फैट्टी एसिड तथा एल्फा लाइनोलेनिक एसिड के सबसे अधिक शाकाहारी स्रोत हैं।

चित्र:1.55 सीएसआईआर-सीएफटीआरआई द्वारा अखिल भारतीय किसान सशक्तिकरण कार्यशाला में अपनी प्रौद्योगिकी को लोकप्रिय करना

कर्नाटक के ग्रामीण बेकर्स को सीएसआईआर-सीएसफटीआरआई की प्रौद्योगिकियों से सशक्त करना

सीएसआईआर-सीएफटीआरआई ने कर्नाटक के ग्रामीण बेकर्स के लाभार्थ 20 फरवरी, 2015 को एक दिवसीय कार्यशाला का आयोजन किया है। कर्नाटक के कुल 27 ग्रामीण बेकर्स ने इस कार्यशाला में प्रतिभागिता की। यह कार्यक्रम ग्रामीण बेकर्स को सीएसआईआर-सीएफटीआरआई की प्रौद्योगिकियों से सशक्त कराने और बेकिंग पहलुओं पर उन्हें पूरा ज्ञान उपलब्ध कराने के लिए आयोजित किया गया था।

चित्र: 1.56 सीएसआईआर-सीएफटीआरआई के वैज्ञानिकों द्वारा कर्नाटक के ग्रामीण बेकर्स को बेकिंग अवधारणाओं का प्रदर्शन

2014-15

महिलाओं और बच्चों में कुपोषण से लड़ने के लिए एस एण्ड टी अंतराक्षेप

पोषक उत्पाद जैसेचावल दूध का मिश्रण, अधिक प्रोटीन वाले रस्क, ऊर्जा खाद्य-नया सूत्रण, स्पाइसलाइना वाली न्यूट्रिचिक्की, खाद्य हेतु दाल आधारित पोषण संबंधी अनुपूरक (डीबीएनएस), तिल आधारित पोषणिक पूरक और मजबूत मैंगोबार को आईसीडीएस के खिलाने की सूची के साथ जोड़ने के लिए विकसित किया गया तािक कुपोषण से पीडि़त छोटे-छोटे बच्चों पर लिक्षत मेको एवं माइक्रो पोषणों हेतुआरडीए की आवश्यकतािको पूरा किया जा सके। विकसित सभी उत्पादों के आवश्यक पोषण संबंधी मानदंडों का परीक्षणआवश्यक आरडीए का परिकलन करने और उनकी सुरक्षा सुनिश्चित करने के लिए किया गया था।

मैसूर जिले के महिला एवं बाल विकासविभाग के 20 प्रतिनिधियों के लिए पोषक खाद्य उत्पादों के उत्पादन एवं प्रबंधन पर दो दिवसीयप्रशिक्षण कार्यक्रम का आयोजन किया। महिला एवं बाल विकास के अधिकारी, बाल विकास परियोजना अधिकारी (सीडीपीओएस), महिला अनुपूरक खाद्य उत्पादन एवं प्रशिक्षण केंद्र (एमएसएफपीटीसी) और आंगनवाड़ी कार्यकर्ताओंको इस परियोजना योजना में शामिल किया गया।

सीएसआईआर-सीएफटीआरआई की टीम ने मैसूर जिले के महिला एवं बाल विकास विभाग मके पदाधिकारियों के साथ नंजनगुड तालुक की आंगनवाड़ियों का दौरा किया और कुछ आंगनवाड़ी का आईसीडीएस के मौजूदा व्यंजन-सूची के साथ सीएसआईआर-सीएफटीआरआई उत्पादों को वितरण करने के लिए चयन किया। रामपुरा, हेगडहल्ली और चमालपुरा दाहुंडी के आंगनवाड़ी को और नेजनगुड तालुक में कोठनहल्ली कॉलोनी को निमंत्रण के रूप में चुना गया। 3-6 वर्ष के बच्चों का लक्ष्ण रखा गया। उनकी सामाजिक स्थिति, स्वास्थ्य स्थिति और पारिवारिक पृष्ठभूमि का विश्लेषण करने के लिए आंगनवाड़ी (रामपुरा, हेगड़हली तथा चमालपुरा दाहुंडी) के 12 केंद्रों के 250 बच्चों का प्रश्नावली केअनुसार बेस लाइन मानवमितिय सर्वेक्षण किया गया।

सीएसआईआर-सेंटर <mark>फॉर हाई ऐल्टीट्यूड बायोलॉ</mark>जी (CSIR-ceHAB)

सीएसआईआर-आईएचबीटी ने लाहौल और स्पीति के दूरस्थ आदिवासी क्षेत्र में हाई ऐल्टीट्यूड जैविकी हेतु सीएसआईआर-केन्द्र (CSIR-ceHAB) स्थापित किया है जो जलवायु परिवर्तन, जैव संसाधन को संरक्षित करने तथा निश्चयात्मक वृद्धि के लिए स्थानीय लोगों को ज्ञान का स्थांतरण करने के विषय में हाई ऐल्टीट्यूड जैव-प्रणालियों से संबंध रखने वाले अध्ययनों पर बल देता है। सीएसआईआर-सीएचएबी में एक फूड प्रोसेसिंग यूनिट (खाद्य प्रसंस्करण इकाई) स्थापित किया गया है। हाल ही में फूड व ऐग्री-प्रोसेसिंग से संबंधित सीएसआईआर तकनीकी जानकारी केलांग में आदिवासी मेले में प्रदर्शन-मंजूषा में प्रदर्शित की गई तथा विकासशील किसानों के लाभ हेतु कूटू (बक व्हीट) से नए उत्पादों के निर्माण और क्षेत्र की प्रमुख फसलों मटर व पत्तागोभी के लवण जलीय संबंधी प्रशिक्षण का आयोजन किया गया।

उत्तर-पूर्व के लिए नई रेंज के चर्म उत्पाद

सीएसआईआर-सीएलआरआई ने चर्म कारीगरों के अधिक मुनाफे के लिए उत्तर पूर्व में चर्म उत्पादों के कलात्मक आकर्षण, मानकीकरण और नई रेंज को आरंभ किया है। हैण्ड बैग एवं अन्य चर्म उत्पादों को भारत के उत्तर-पूर्व के जनजातीय लोगों द्वारा धारण किए जाने वाले आभूषणों, परिधानों एवं कलाकृतियों पर आधारित उत्तर-पूर्व के एथिनक डिजाइनों और सामग्री से तैयार किया गया है।

कुपोषण से लड़ने के लिए एस एण्ड टी अंतराक्षेप

सीएसआईआर-एनबीआरआई ने कुपोषण से लड़ने के लिए संस्थान द्वारा विकसित 'न्युट्रि-जैम' के माध्यम से एस एण्ड टी अंतराक्षेप उपलब्ध कराने के लिए उत्तर प्रदेश के दो गांव — दुआ (उन्नाव) और दाफेदार का पुरवा (बाराबंकी) का चयन किया है। इस उत्पाद को थोक में तैयार करने के लिए संघटक प्राप्त कर लिए गए और बृहद उत्पादनार्थ एसओपीएस तैयार किए। 250 (500 ग्राम) बंद बोतलें इन गांवों के लिक्षत लोगों हेतु तैयार की । संस्थान ने डाटा संग्रहण, पोषणिक स्थित, व्यक्तियोंके खाद्य एवं पेय जल संबंधी स्थित के लिए कई बार दोनों गांवों का सर्वेक्षण किया है। वनस्पितयों, फलों, अनाजों तथा औषधीय पादप इत्यादि संबंधी विभिन्न पहलुओं पर पोस्टर तैयार किए गए और इन्हें ग्रामीण लोगों में स्वास्थ्य संबंधी जागरूकता सृजन करने के लिए दौन गांव के प्राथमिक विद्यालय की कक्षाओं में प्रदर्शित किया।

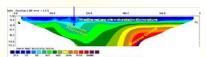
भूमिगत जल स्तर के प्रबल हास के न्यूनीकरण हेत् समाधान

नालगोण्डा जिला, तेलंगाना में स्थित मन्डोलागुडेम टीईसीएचवीआईएल क्लस्टर सूखा प्रभावित क्षेत्र के अंतर्गत आता है क्योंकि यहां औसतन 620 मि.मी. वर्षा होती है। सतही जल का निम्न संचरण और जलवाही स्तर के बीच खराब जुड़ाव (कनेक्टिविटी) इस क्षेत्र की विशेषता है। बहिर्जात प्रक्रमों के अलावा अरंडी/कपास से धान की खेती तक की फसल के पैटर्न में तब्दीली से प्रभावित भूमिगत जल के अत्यधिक उपयोग के कारण पिछले दस वर्षों के दौरान भूमिगत जल के स्तर में तेजी से कमी आई है। चूंकि अचानक नई फसल पर शिफ्ट करना अत्यंत कठिन है, सीएसआईआर-एनजीआरआई ने सुझाव दिया कि आल्टरनेट वैटिंग एंड ड्राइंग (एडब्ल्यूडी) और डायरेक्ट सीडिंग प्रणालियों के साथ राइस इन्टेन्सीफिकेशन प्रणाली को अपनाने से निरंतर अनियंत्रित बाढ़ग्रस्त क्षेत्र प्रणालियों की तुलना में अधिक अनाज उत्पादकता के साथ 30 प्रतिशत तक पानी की खपत कम होगी। विविध डेटा सेट्स के सांख्यिकीय विश्लेषण से यह निष्कर्ष निकलता है कि कम पानी का उपयोग करने वाली फसलों और वैज्ञानिक सिंचाई पद्धितयों को अपनाना भूमिगत जल स्तरों के प्रबल हास को कम करने के अत्यधिक अनुशंसित समाधान हैं।

हार्ड रॉक क्षेत्र में भूमिगत जल संसाधनों की खोज तथा उसे स्थानीय लोगों में आपूर्ति करना

सीएसआईआर-एनजीआरआई की क्षेत्रीय वेधशाला तेलंगाना के नालगोण्डा जिले में स्थित है, यह क्षेत्र हार्ड रॉक के लिए जाना जाता है। यह क्षेत्र बहुत कम वर्षा (~600 मिमी.), सिंचाई के लिए भूमिगत जल का अत्यधिक उपयोग करने और खराब जल प्रबंधन पद्धतियों के कारण वर्ष 2012 से पेयजल की कमी से जूझ रहा है।

चित्र:1.57(क) क्षेत्र परीक्षण का हवाई चित्र



चित्र:1.57(ख) जल की कमी

2014-15

चित्र:1.57(ग) 2डी इलेक्ट्रिकल रिसिस्टिविटि टोमोग्राफी (ईआरटी) जैसी भूभौतिकी तकनीकों के द्वारा भूजल का अभिनिर्धारण एवं पता

चित्र:1.57(घ) अभिनिर्धारित स्थलों पर बोरवेल्स

चित्र:1.57(ड.) बोरवेल से आने वाले पानी को नजदीकी गांवों के ओवरहेड टैंक में ले जाते हुए

आयरन निष्कासन हेतु बेहतर संयंत्र

भूजल में अधिक आयरन के होने से लोगों में स्वास्थ्य संबंधी खतरों सिहत बहुत सी समस्याएं पैदा होती हैं और इसके कारण घर के धोने के कपड़े और लॉंड़ी पर जंग, धब्बे भी होते हैं। सीएसआईआर-सीएमईआरआई द्वारा डिजाइन एवं विकसित किया गया लोह निष्कासन संयंत्र के बेहतर रूप में भूजल की लोह निष्कासन प्रक्रिया मौजूदा इंडिया मार्क-II हैंड पंप, वातन कक्ष के आस-पास बहुत से होल, पूर्ण नि:सादन कक्ष और आयरन मुक्त सुरक्षित पेय जल को संग्रहित करने के लिए एक निकास नली के साथ उपयुक्त फोर्स तथा लिफ्ट टाइप व्यवस्था को समायोजित करता है। इस बेहतर आयरन निष्कासन यंत्र में समुदाय के उपयोग के लिए 800 लीटर/घंटा वितरण करने की धारिता है। इसके लाभ हैं: निष्कासनार्थ प्राकृतिक रूप से उपलब्ध बालू तथा बजटी का उपयोग; विद्युत शक्ति की कोई आवश्यकता नहीं। दूरस्थ गांवों में क्रियान्वयन करने योग्य; मौजूदा मार्क-II हैंड पंप से जोड़ने योग्य; सरल प्रचालन तथा अनुरक्षण को सुगम करने की सरल डिजाइन; तुरंत लोह मुक्त जल; और लागत प्रभाविता।

चित्र 1.58: निस्यंदन संयंत्र का परिचालन

2014-15

पेय जल के डिफ्लोराइडीकरण हेतु घरेलू फिल्टरन यूनिट

ग्रामीण भारत में भूजल जल आपूर्ति का एक महत्वपूर्ण स्रोत है; 90% से अधिक ग्रामीण अपने पीने तथा घरेलू आवश्यकताओं को पूरा करने के लिए भूजल पर निर्भर रहते हैं। भूजल में फ्लोराइड कंटेंट भारत के बहुत से राज्यों में अनुमत सीमा से अधिक पाया जाता है। अधिक फ्लोराइड लेने से हड्डी एवं दॉतोंका अपहासन होता है जिसे फ्लोरोसिस कहा जाता है। ग्रामीण समुदायों में डिफ्लोराइडीकरण के लिए उपनयुक्त प्रौद्योगिकी की बहुत अधिक मांग है। फ्लोराइड संदूषण को कम करने के लिए सीएसआईआर-सीएमईआरआई ने डिफ्लोराइडीकरण के लिए नए अवशोषकों के साथ-साथ बहुचरणीय फिल्टरन यूनिट का आदिप्ररूप विकसित किया है। बैच टाइप प्रयोगों से यह प्रेक्षित किया गया है कि विकसित आशोधित सक्रिय एलुमिना अवशोषक में (एफआईए) लगभग दुगनी डिफ्लोराडीकरण धारिता प्रदर्शित होती है तब यह शुद्ध सक्रिय एलुमिना (एए) के साथ प्राप्त की जा सकती है। यह फिल्टरन यूनिट 6 mg/L फ्लोराइड संदूषित जल से डब्ल्यू एच ओ की सीमा (1.5 mg/L) से अधिक फ्लोराइड सांद्रता को कम करने में सक्षम है। इस फिल्टरन यूनिट की प्रमुख विशेषताएं हैं: घरेलू अवशोषक आधारित बहुचरणीय जल फिल्टरन यूनिट; भंडारण क्षमता:12L; AA+FIA+SLAC अवशोषक से बना हुआ; बिना बिजली क्लोरीन, ब्रोमाइन, आयोडीन के प्रचालन; चालू पानी की आवश्यकता नहीं; प्रवाह दर: 5लीटर/घन्टा; अवशोषक आय ~1500 लीटर; मानक एसआईएसी अवशोषकोंकेउपयोग के बाद माइक्रोबियल कंटेंट हटा दिया जाएगा; और उत्पाद की भौतिक लागत:~रू. एक हजार।

आर्सेनिक संदूषित क्षेत्रों हेतु चावल की कृषिजोपजाति (मुक्ताश्री)

सीएसआईआर-एनबीआरआई ने चावल अनुसंधान केंद्र (आरआरएम), चिंसुरा, पिश्वम बंगाल के सहयोग से पिश्वम बंगाल के आर्सेनिक संदूषित क्षेत्रों में क्षेत्रों की खेती के लिए चावल की कृषिजोपजाति सीएन 1794-2- सीएसआईआर-एनबीआरआई, नाम मुक्ताश्री का अभिनिर्धारण एवं विकास किया है। इस प्रजाति के चावल में आर्सेनिक का संचयन कम होता है। यह प्रजाति छः चावल प्रजातियों अर्थात आईईटी 19226, नयनमोनी, सीएन 1643-3, सीएन 1646-2 में से एक है जो 100 लोकप्रिय चावल प्रजातियों जिनका परीक्षण क्षेत्र निष्पादकता ट्रायल के माध्यम से पिश्वम बंगाल के छः स्थलों अर्थात मिट्टी में आर्सेनिक संदूषण के विभिन्न स्तर वाले गेघटा, दुर्गापुर, बेलडंगा, चिंसुरा, पुर्बोस्थली तथा बीरनगर में किया गया, से चावल में कम आर्सेनिक संचयन करने वाली प्रजाति के रूप में अभिनिर्धारित की गई थी। इन अभिनिर्धारित प्रजातियों में भी उच्च उत्पादन (5.0-6.0 टन/हेक्टे.) बढ़ाया गया और विशेषतया बोरो (ग्रीष्ट्रम) मौसम के लिए आशान्वित हैं।

चावल-चिंसुराह, हुगली, पश्चिम बंगाल में खेत में परीक्षण के तौर पर

बीरनगर नाडिया, पश्चिम बंगाल में खेत में परीक्षण

मुक्ताश्री: चावल की संचित कृषि जोपजाति के रूप में नई विकसित लो ग्रेन

चित्र:1.59 मुक्ताश्री: चावल की संचित कृषि जोपजाति के रूप में नई विकसित लो ग्रेन

2014-15

2.0 केंद्रीय प्रबंधन गतिविधि

2.1 सीएसआईआर समुदाय के लिए भारत के प्रधान मंत्री का संदेश

मई, 2014 को श्री नरेंद्र मोदी ने देश के प्रधान मंत्री के रूप में कार्यभार ग्रहण किया और परंपरा के अनुसार वह वैज्ञानिक तथा औद्योगिक अनुसंधान परिषद (सीएसआईआर), नई दिल्ली के अध्यक्ष भी बने। सीएसआईआर के अध्यक्ष के रूप में, माननीय प्रधान मंत्री जी ने सीएसआईआर समाचार के माध्यम से अपने विशेष संदेश में सीएसआईआर समुदाय से अनुरोध किया कि देश जिन चुनौतियों का सामना कर रहा है उनके समाधान ढूंढें और उत्कृष्टता के लिए अतिरिक्त प्रयास करें।

प्रधान मंत्री Prime Minister

MESSAGE

I extend my heartiest greetings to the fraternity of the Council of Scientific and Industrial Research (CSIR).

Science and industry must continue to be the locomotive of India's growth, marching in step with the wider priorities of the nation. CSIR has a unique and critical mandate to transplant scientific knowledge from laboratories into the workplace, and to bridge the gap between intellectual pursuit of science and the practical needs of the industry and society at large. In this, the CSIR community needs to apply itself to the day-to-day challenges facing our country, whether in livelihood issues like drinking water and sanitation, nutrition, low cost housing and medicines or in macroeconomic challenges like clean energy, food security, and environmental protection. We need to look for innovative and cost effective solutions to these problems that still plague our country, by keeping abreast of global trends and developments, while also remaining aware of the rich heritage of Indian society.

I would urge my colleagues in the CSIR to seek excellence, individually and as an organization, in a methodical and time bound manner, so as to help us attain the goals that we have set for the development of our country.

New Delhi 22 July, 2014

सीएसआईआर स्थापना दिवस

2.2

सीएसआईआर ने 26 सितंबर, 2014 को अपना स्थापना दिवस सीएसआईआर-राष्ट्रीय भौतिक प्रयोगशाला, नई दिल्ली में भव्य उत्सव के रूप में मनाया। पूरे देश में फैले संपूर्ण सीएसआईआर परिवार ने इस उत्सव को पूरे उत्साह के साथ मनाया। यह अवसर इस वर्ष की उन उपलब्धियों को मनाने का था जो राष्ट्र की सेवा हेतु पूरे समर्पणसेकी गयी थी और भविष्य के लिए योजना की गई थी। यह सीएसआईआर युवा वैज्ञानिक पुरस्कार, स्कूली बच्चों हेतु

(Narendra Modi)

2014-15

सीएसआईआर नवोन्मेष पुरस्कार, सीएसआईआर हीरक जयंती प्रौद्योगिकी पुरस्कार और ग्रामीण विकास हेतु विज्ञान एवं प्रौद्योगिकी नवोन्मेषी के लिए सीएसआईआर पुरस्कार जैसे विभिन्न पुरस्कारों की प्रस्तुति के माध्यम से विज्ञान की उत्कृष्टता हेतु मान्यता देने का भी अवसर था। इस अवसर पर विज्ञान में सर्वाधिक पुरस्कार अर्थात शांति स्वरूप भटनागर पुरस्कार की घोषणा होती है। माननीय विज्ञान एवं प्रौद्योगिकी तथा पृथ्वी विज्ञान राज्य मंत्री (स्वतंत्र प्रभार) एवं उपाध्यक्ष, सीएसआईआर, डॉ. जितेंद्र सिंहने इस कार्यक्रम की अध्यक्षता की। इस कार्यक्रम में प्रतिष्ठित वैज्ञानिकों एवं प्रौद्योगिकीविदों ने भाग लिया। प्रो. के. विजय राघवन, प्रतिष्ठित वैज्ञानिक एवं सचिव, जैव प्रौद्योगिकी विभाग ने ''द न्यूरोबायोलॉजीऑवब्रेन डेवलपमेंट एंड द वेज अहैड फॉर इंडिया'' शीर्षक पर स्थापना दिवस व्याख्यान दिया और डॉ. पी.एस. आह्जा, महानिदेशक, सीएसआईआर ने स्वागत भाषण दिया।

चित्र: 2.1 बांए से दांए: डॉ. पी.एस. <mark>आहूजा, महानिदेशक,</mark> सीएसआईआर, डॉ. जितेंद्र सिंह, माननीय वि<mark>ज्ञान एवं प्रौद्योगिकी</mark> तथा पृथ्वी विज्ञान राज्य मंत्री (स्वतंत्र प्रभार) प्रो. के. विजयराघवन, सचिव, जैव प्रौद्योगिकी विभाग तथा प्रो. आर.सी. बुधानी, निदेशक, सीएसआईआर-एनपीएल

2.2.1 डॉ.पी.एस. आहूजा<mark>, महानिदेशक, सी</mark>एसआईआर द्वारा स्वागत भाषण

डॉ. पी.एस. आहूजा, महानिदे<mark>शक, सीएसआईआर (</mark>महानिदेशक, सीएसआईआर) ने माननीय <mark>केंद्रीय मंत्री</mark> डॉ. जितेंद्र सिंह, प्रो. के. विजय राघवन एवं अन्य प्रतिष्ठित आमंत्रित जनों का गर्म जोशी से स्वागत किया।

महानिदेशक, सीएसआईआर ने श्रोताओं तथा मंत्री जी को गत वर्ष के दौरान हुए कुछ महत्वपूर्ण विकासोंको बताया जिन पर सीएसआईआर को वास्तव में गर्व है। उन्होंने बताया कि देश के मार्स मिशन की आश्चर्यजनक सफलता में सीएसआईआर का भी भाग था चूंकि सीएसआईआर-सीईईआरआई ने ऐसे सेंसरों का विकास किया था जो रॉकेट में त्रुटियों का पता लगाते हैं, सीएसआईआर-एनएएल ने लैंडिंग तथा टेक-ऑफ संबंधी ऑपरेशन में सहायक अत्याधुनिक दृष्टि ट्रांसमिसोमीटर का विकास हवाई अड्डोंपर रनवे दृश्यता के मापनार्थ किया; सीएसआईआर-प्रगत पदार्थ तथा प्रक्रम अनुसंधान संस्थान, भोपाल द्वारा देश के नाभिकीय केन्द्रों की विकिरण सुरक्षा हेतु नवीन निर्माण पदार्थ का विकास; सीएसआईआर-सीजीसीआरआई ने पहला स्वदेश कंफोकल माइक्रोस्कॉप का विकास कर बड़ी महत्वपूर्ण खोज की तथा सीएसआईआर की और भी बहुत सी सफलताएं हैं।

चित्र: 2.2 डॉ. पी.एस. आहूजा, महानिदेशक, सीएसआईआर सभा को संबोधित करते हुए

2014-15

सीएसआईआर सूक्ष्म लघु एवं <mark>मध्यम उद्योग (एमएसएमई)</mark> क्षेत्रसेस्वयं मिल कर रहा है । <mark>640 उत्पादों की एक निर्</mark>देशिका एमएसएमई मंत्रालय के साथ संकलित की गई थी और सीएस<mark>आईआर ऐसे क्षेत्रों</mark> में उद्यमिता शुरू करने की प्रतीक्षा कर रहा था । महानिदेशक, सीएसआईआर ने बताया कि सीएसआईआर के सभी संस्थान अब नवोन्मेष केंद्र बन चुके हैं ।

डॉ. आहूजा ने यह जानकारी दी <mark>कि सीएसआई</mark>आर का प्रकाशन रिकार्ड कुल लगभग 5000 प्र<mark>काशनों से भी सुधरा है और औस</mark>तन प्रभाव घटक 2.56 से बढ़कर इस वर्ष 2.86 हुआ है। उन्होंने यह भी जानकारी दी कि बहुत से विदेशी देशों के साथ समझौते किए गए और चूंकि विदेशी फैलोज की मांग थी कि सीएसआईआर विनिमय कार्यक्रमों <mark>के भाग के रूप</mark> में आए। इसकेअतिरिक्त, सीएसआईआर वैज्ञानिकों को इंफोसिस पुरस्कार तथा शांति स्वरूप भटनागर पुरस्कार भी प्रदान किए गए हैं।

इस अवसर पर डॉ. आहूजा ने शांति स्वरूप भटनागर पुरस्कार 2014 के विजेताओं के नाम भी घोषित किए।

2.2.2 डॉ. जितेंद्र सिंह, माननीय विज्ञान एवं प्रौद्योगिकी तथा पृथ्वी विज्ञान मंत्री (स्वतंत्र प्रभार) एवं उपाध्यक्ष, सीएसआईआर का संबोधन

डॉ. जितेन्द्र सिंह, माननीय विज्ञान एवं प्रौद्योगिकी तथा पृथ्वी विज्ञान मंत्री (स्वतंत्र प्रभार) ने इस कार्यक्रम की अध्यक्षता की। उन्होंने एक मजबूत वैज्ञानिक नींव की आवश्यकता पर बल दिया चूंकि देश को अगले कुछ वर्षों में महाशक्ति बनने के अपने उद्देश्य को हासिल करने की उम्मीद की है। उन्होंनेबताया कि एक राष्ट्र की आर्थिक ताकत उसकी वैज्ञानिक तामत एवं समर्थता से निर्धारित होगा।

उन्होंने बताया कि भारत के युवा राजदूत, भारत के युवा वैज्ञानिक पण, सर्वोत्तम जीवंत उदाहरण और वास्तव में "मेक इन इंडिया" राष्ट्र के विजन के लिए महत्वपूर्ण है। इस दृष्टिकोण से भारत का स्थान विशेष रूप से सही है, उन्होंने कहा, चूंकि देश की 65% से अधिक संख्या के लोक 35 की आयु से नीचे के हैं। उन्होंने कहा कि युवा हमारे भविष्य के विज्ञान बैंक हैं।

चित्रः 2.3 डॉ. जितेंद्र सिंह, माननीयविज्ञान एवं प्रौद्योगिकी तथा पृथ्वी, विज्ञान राज्य मंत्री (स्वतंत्र प्रभार) जनसमूह को संबोधित करते हुए।

उन्होंने अपनी इच्छा जाहिर की कि शिक्षक एवं माता-पिता प्रतियोगी परीक्षाओं हेतु परंपरागत दौड़ में बच्चों के प्रवेश करने से पहले दस की आयु पर उनके नए नवोन्मेषी विचारों को समझें। डॉ. जितेंद्र सिंह ने ऐसे युवाओंको अभिनिर्धारित तैयार करने को कहा जो आगामी नवोन्मेष करने हेतु सक्षम हैं। इससे न केवल वैज्ञानिक अनुसंधान सर्वश्रेष्ठ प्रतिमा से समृद्ध होगा बिल्क युवाओं को उनकी अभिक्तिय के सर्वाधिक अनुकूल दिशा भी मिलेगी। उन्होंने कहा, नवोन्मेष प्रौद्योगिकी की पहली आवश्यकता है और दूसरा युवाओं को प्रेरित करने के लिए साथ-साथ चलने की आवश्यकता है। उन्होंने माता-पिता एवं शिक्षकों से कहा कि युवाओं को सलाह दें और उन्हें हमेशा पुन: रमरण कराएं:सर्वश्रेष्ठ क्यों न हों ? डॉ. जितेंद्र सिंह ने कहा कि नकेवल मेरे मंत्रालय ने सरकारी क्षेत्र के 5000 वैज्ञानिकों हेतु अनिवार्य करने का निर्णय लिया है कि वे स्कूल तथा कॉलेजों में वक्तव्य दें और कक्षाएं लें, बिल्क युवा महिला वैज्ञानिकों हेतु नई योजनाएं भी शुक्त की तािक युवा महिला वैज्ञानिकों को पारिवारिक या अन्य कारणों से करियर के बीच में जाने से रोका जा सके। उन्होंने यह भी बताया कि सीएसआईआर आज विश्व-भर के ऐसे 2740 संस्थानों में 81वें स्थान पर हैं और आने वाले समय में यह इस संस्थान के अविश्सनीय वैज्ञानिक कार्यों के केंद्रका अहम स्थान होगा।

2014-15

2.2.3 प्रो. के. विजयराघवन, सचिव-वैज्ञानिक और अनुसंधान विभाग का स्थापना दिवस संबंधी वक्तव्य

प्रो. के. विजयराघवन, एफआरएस, सचिव, जैव प्रौद्योगिकी विभाग (डीबीटी), भारत सरकार के साथ-साथ सचिव, वैज्ञानिक और अनुसंधान विभाग (डीएसटी) तथा वैज्ञानिक और अनुसंधान विभाग का भी अतिरिक्त प्रभार ने 72वें सीएसआईआर स्थापना दिवस पर शीर्षक 'द न्यूरोबायोलॉजी ऑव ब्रेन डिवेलपमेंट एंड द वेज अहेड फॉर इंडिया' पर व्याख्यान दिया।

प्रो. विजयराघवन ने मानव के रहस्यमय मनोग्रंथि की एक आकर्षक जानकारी दी और गत कुछ दशकों की प्रगति पर प्रकाश डाला और कैसे जटिल मनोग्रंथि को विशाल पैमानेपर बनाया जाता है। यह सब कमतर मनोग्रंथि पर हुए अध्ययनोंसे संभव हो पाया है लेकिन कीडे, फ्लीज, मछलियों, मेंढक एवं चूहों जैसे मॉडल जीवोंका मस्तिष्क रूचि कर रहा है। उन्होंनेमनोंग्रंथि के विकास के अध्ययन की हाल की कुछएक प्रगति की समीक्षा की।

चित्र: 2.4 प्रो.के विजय राघवन, सचिव, डीबीटी स्थापना दिवस व्याख्यान देते हुए

उन्होंने कहा कि मनोग्रंथियां जीनों से बनी होती हैं लेकिन वे भी हमारे वातावरण, भ्रूण के दौरान हमारी माताओं से मिले पोषण तथा जन्म के बाद बहुत से अन्य कारकों से प्रभावित होती हैं। भ्रूण और प्रारंभिक विकास के दौरान कुपोषण तथा रोग भी संज्ञानात्मक विकास के लिए गंभीर खतरा होते हैं। अविकसित मनोग्रंथि की वृद्धि का यह बड़ा उदाहरण एक बड़ी चुनौती है जिसे भारत झेल रहा है — अपनी मनोग्रंथियों को बचानेकामिशन इस कार्यक्रम की समाप्ति पर बहुत से प्रतिष्ठित सीएसआईआर अर्वाड्स दिए गए जिनमें सीएसआईआर युवा वैज्ञानिक पुरस्कार, सीएसआईआर प्रौद्योगिकी पुरस्कार, सीएसआईआर हीरक जयंती प्रौद्योगिकी पुरस्कार, स्कूल बच्चों हेतु सीएसआईआर नवोन्मेष पुरस्कार और ग्रामीण विकास हेतु एस एंड टी नवोन्मेष सीएसआईआर पुरस्कार शामिल हैं।

2.2.4 शांति स्वरूप भटनागर (एसएसबी) पुरस्कार, 2014

विज्ञान तथा प्रौद्योगिकी के लिए शांतिस्वरूप भटनागर (एसएसबी) पुरस्कार देश में शायद अत्यधिक प्रतिक्षित वैज्ञानिक पुरस्कार होते हैं। स्वर्गीय डॉ.(सर) शांतिस्वरूप भटनागर, एफआरएस, वैज्ञानिक तथा औद्योगिक अनुसंधान परिषद (सीएसआईआर) के संस्थापक निदेशक की स्मृति में वर्ष 1957 में स्थापित, एसएसबी पुरस्कार पुरस्कार वर्ष से पांच वर्षों के दौरान भारत में प्राथमिक तौर पर किए गए कार्य से हुई प्रगति और मानव ज्ञान में विशिष्ट महत्व और उत्कृष्ट योगदानों के आधार पर प्रत्येक वर्ष प्रदान किया जाता है। भारत का कोई भी व्यक्ति जिसकी आयु 45 वर्ष तक की है तथा जो विज्ञान एवं प्रौद्योगिकी के किसी भी क्षेत्र में अनुसंधानरत है, वह एसएसबी पुरस्कार के लिए नामित किए जाने के लिए पात्र होता है। विदेशों में रह रहे भारतीय (ओसीआई) तथा भारतीय मूल के व्यक्ति (पीआईओ) जो भारत में कार्य कर रहे हैं, वे भी इसके लिए विचार किए जाने के पात्र हैं।

एसएसबी पुरस्कार में एक प्रशस्ति पत्र, 5, 00, 000/- (रुपये पांच लाख) का नकद पुरस्कार और <mark>एक स्मृ</mark>ति चिन्ह निम्नलिखित विषयों में अवार्ड हेतु चुने गए प्रत्येक व्यक्ति को दिया जाता <mark>है: जीव विज्ञा</mark>न; रसायन विज्ञान; पृथ्वी, वायुमंडल, महा<mark>सागर और ग्रहीय</mark> विज्ञान; इंजीनियरी विज्ञान; गणित विज्ञान; आयुर्विज्ञान तथा भौतिक विज्ञान।

. डॉ. पी.एस. आहूजा, महानिदे<mark>शक, सीएसआई</mark>आर ने वर्ष 2014 के प्रतिष्ठित शांति स्वरूप <mark>भटनागर पुरस्कार</mark> की घोषणा की। वर्ष 2014 हेतु दस (10) वैज्ञानिकों को विज्ञान एवं प्रौद्यो<mark>गिकीशांति स्वरूप</mark> भटनागर पुरस्कार हेतु चुना गया है।

जीव विज्ञान: डॉ. रूप मलिक, टाटा मूलभूत अनुसंधान संस्थान, मुंबई

2014-15

रसायन विज्ञान: डॉ. कविरायनी रामकृष्ण प्रसाद, भारतीय विज्ञान संस्थान, बेंगलूरु तथा <mark>डॉ. सुविक मैती</mark>, सीएसआईआर-जीनोमिकी तथा समवेत जीव विज्ञान संस्थान, दिल्ली <mark>को संयुक्त रूप</mark> से

पृथ्वी, वायुमंडल, महासागर और भूमंडलीय विज्ञान: डॉ. सच्चिदानंद त्रिपाठी, भारतीय प्रौद्यो<mark>गिकी संस्थान,</mark> कानपुर

इंजीनियरी विज्ञान: संयुक्त रूप से: डॉ. एस. वेंकट मोहन, सीएसआईआर-भारतीय रासाय<mark>निक प्रौद्योगिकी</mark> संस्थान, हैदराबाद; डॉ. सुमन चक्रवर्ती, भारतीय प्रौद्योगिकी संस्थान बॉम्बे, मुंबई

गणित विज्ञान: डॉ. कौशल कुमार वर्मा, भारतीय विज्ञान संस्थान, बेंगलूरु

आयुर्विज्ञानः डॉ. अनुराग अग्रवाल, सीएसआईआर-जीनोमिकी एवं समवेत जीवविज्ञान संस्थान, दिल्ली

भौतिक विज्ञान: संयुक्त रूप से: डॉ. प्रताप रायचौधरी, टाटा मूलभूत अनुसंधान संस्थान, मुंबई और डॉ. सादिक अली अब्बास रंगवाला, रमन अनुसंधान संस्थान, बेंगलूरु

2.2.5 सीएसआईआर युवा वैज्ञानिक पुरस्कार, 2014

वर्ष 1987 में प्रारंभ किए गए सीएसआईआर युवा वैज्ञानिक पुरस्कार गत वर्ष के 26 सितम्बर को 35 वर्ष की आयु के सीएसआईआर सिस्टम में कार्यरत वैज्ञानिकों के लिए हैं। ये पुरस्कार प्रमुख रूप से भारत में किए गए कार्य के आधार पर युवा वैज्ञानिकों द्वारा किए गए उत्कृष्ट योगदानों हेतु प्रतिवर्ष निम्नांकित क्षेत्रों में दिए जाते हैं: जीव विज्ञान; रसायन विज्ञान; इंजीनियरी विज्ञान; पृथ्वी, वायुमंडल, महासागर एवम् ग्रहीय विज्ञान; भौतिक विज्ञान (उपकरणन सहित)

प्रत्येक पुरस्कार में एक प्रशस्ति पत्र, 50, 000/- (रूपये पचास हजार मात्र) का नकद पुरस्कार और एक स्मृति चिह्न होता है। सीएसआईआर युवा वैज्ञानिक पुरस्कार विजेता पाँच वर्ष की अवधि के लिए रु.5 लाख (रूपये पाँच लाख मात्र) प्रतिवर्ष की अनुसंधान अनुदान तथा 45 वर्ष की आयु तक प्रतिमाह रु.7500/- (रूपये सात हजार पाँच सौ मात्र) के मानदेय के भी पात्र हैं।

वर्ष 2014 हेतु सीएसआईआर युवा वैज्ञानिक पुरस्कार प्राप्त करने वाले निम्न हैं:

जीव विज्ञान: डॉ. राजेन्दर सिंह, सीएसआईआर-सीडीआरआई और डॉ. विवेक टी नटराजन, सीएसआईआर-आईजीआईबी को संयुक्त रूप से

रसायन विज्ञान: डॉ. परविंदर पाल सिंह, सीएसआईआर-आईआईएम तथा डॉ. वी. गणेश, सीएसआईआर-सीईसीआरआई को संयुक्त रूप से

पृथ्वी, वायुमंडल, महासागर तथा ग्रहीय विज्ञान: डॉ. सुमित कुमार मिश्रा सीएसआईआर-एनपीएल

इंजीनियरी विज्ञान: डॉ. मनमोहन दास गोयल, सीएसआईआर-एएमपीआरआई

भौतिक विज्ञान: श्री एन सेल्वन कुमार, सीएसआईआर-एनएएल तथा डॉ. वेद वरुण अग्रवाल, सीएसआईआर-एनपीएल

चित्र: 2.5 माननीय विज्ञान एवं प्रौद्योगिकी मंत्री, महानिदेशक, सीएसआईआर तथा सचिव, जैवप्रौद्योगिकी विभाग के साथ युवा वैज्ञानिक पुरस्कार विजेता वैज्ञानिक

2014-15

2.2.6 सीएसआईआर प्रौद्योगिकी पुरस्कार 2014

सीएसआईआर प्रौद्योगिकी पुरस्कार बहु-विषयक इन-हाउस समूह के प्रयासों को उत्साहित एवं प्रेरित करने तथा प्रौद्योगिकी विकास, स्थानांतरण, विपणन तथा वाणिज्यीकरण के लिए बाह्य अंत:क्रिया को ध्यान में रख कर स्थापित किए गए थे। इन पुरस्कारों में निम्नांकित सिम्मिलत हैं: (i) लाइफ साइंसेज; (ii) इंजीनियरी समेत भौतिक विज्ञान; (iii) नवोन्मेष; (iv) व्यापार विकास एवम् प्रौद्योगिकी विपणन तथा (v) पंचवर्षीय योजना अविध की सबसे महत्वपूर्ण सीएसआईआर प्रौद्योगिकी वे लिए रुपए 5 लाख (रुपये पांच लाख मात्र) का नगद पुरस्कार प्रदान किया जाता है। इसको छोड़कर प्रत्येक प्रौद्योगिकी पुरस्कार के अन्तर्गत रुपए 2 लाख (रुपये दो लाख मात्र) का नगद पुरस्कार प्रदान किया जाता है। इसको छोड़कर प्रत्येक प्रौद्योगिकी पुरस्कार के अन्तर्गत रुपए 2 लाख (रुपये दो लाख मात्र) का नगद पुरस्कार होता है। इसके अतिरिक्त पुरस्कार विजेताओं को एक फलक तथा एक प्रशस्ति पत्र भी प्रदान किया जाता है। वर्ष 2014 के पुरस्कार विजेता निम्नवत हैं:

• सीएसआईआर-भारतीय रासायनिक प्रौद्योगिकी संस्थान (सीएसआईआर-आईआईसीटी)

सीएसआईआर-आईआईसीटी को चिकित्सा गर्भपात हेतु उपयोगी दवा मिसोप्रोस्टल का प्रक्रम विकसित करने के लिए इंजीनियरी सहित भौतिक विज्ञान के क्षेत्र में अवार्ड मिला है। इस दवा का उपयोग एंटी-अल्सर एजेंट की तरह दर्द निवारक के रूप में भी होता है। यह प्रौद्योगिकी मेसर्स अवरा लैबोरेट्रीज प्रा. लि., हैदराबाद को हस्तांतरित की गई है जिसने इस प्रौद्योगिकीका सफलतापूर्वक वाणिज्यीकरण किया है। सीएसआईआर-आईआईसीटी की प्रौद्योगिकी ने देश में आम लोगों के लिए इसे वहनीय बना कर दवा के उत्पादन की लागत को सफलतापूर्वक कम किया है।

सीएसआईआर-भारतीय पैट्रोलियम संस्थान (सीएसआईआर-आईआईपी)

सीएसआईआर भारतीय पैट्रोलियम संस्थान ने एफसीसी गैसोलिन के सी6 हर्ट कट से यू.एस. ग्रेड गैसोलिन तथा उच्च शुद्धता वाला बेंजीन के समकालिक उत्पादनार्थ प्रक्रम का विकास करने के नवोन्मेष हेतु प्रौद्योगिकी अवार्ड जीता है। यह प्रक्रम निष्कर्षी आसवन इकाई के आगे के फीडस्टॉक की किसी पूर्व प्रक्रम की बिना आवश्यकता के निष्कर्षी आसवनसेअप्रक्रमित क्रैक्ड गैसोलिन अंश से उच्च शुद्धता वाले बेंजीन की बहालीकर बेंजीन लीन गैसोलिन का उत्पादन करता है। विश्व में कहीं भी ऐसा कोई निष्कर्षी आसवन संयंत्र नहीं है जो वर्तमान में बेंजीन लीन गैसोलिन और उच्च शुद्धता वाले बैंजीन उत्पादन करने के दोहरेउद्देश्यार्थ एफसीसी गैसोलिन हार्ट कट फ्रैक्शन का प्रक्रमकररहा हो। रिलायंस उद्योग जामनगर में अपने डीटीए रिफाइनरी स्थल से एफसीसी सी6 हर्ट कट गैसोलिन स्ट्रीम की लगभग 600, 000 एमटीका प्रति वर्ष प्रक्रम करनेके लिए सीएसआईआर-आईआईपी प्रक्रम का क्रियान्वयन करने की योजना बना रहे हैं।

• सीएसआईआर-सूक्ष्मजीव प्रौद्योगिकी संस्थान (सीएसआईआर-आईएमटीईसीएच)

सीएसआईआर-सूक्ष्म जीव प्रौद्योगिकी संस्थान ने अपने ज्ञानाधार के व्यापार तथा विपणन में महत्वपूर्ण ढंग से वृद्धि करने के लिए व्यापार विकास तथा प्रौद्योगिकी विपणन हेतु प्रौद्योगिकी अवार्ड प्राप्त किया है। सीएसआईआर-आईएमटीईसीएच ने वैज्ञानिक एवं प्रौद्योगिकीय नेतृत्व के लिए देश की खोज में महत्वपूर्ण भूमिका निभायी है। इस संस्थान ने उद्योगों को वैज्ञानिक समाधान उपलब्ध कराए और बहुत सी नई रणनीतियों को अपनाया तथा उद्योग हेतु प्रौद्योगिकियों के निर्बाध चलने हेतु व्यापार मॉडल विकसित किए।

इस प्रयोगशाला ने क्लॉट-बस्टर जीवन रक्षक हृदय संबंधीदवा स्ट्रेप्टोकाइनेस के पोर्टफोलियों का विकास किया है और इसे सफलतापूर्वक उद्योग को हस्तांतरित किया गया है। सीएसआईआर-आईएमटीईसीएच की स्ट्रेप्टोकाइनेस के आरंभ के बाद 65% तक मूल्य कम किए है और आज इन्होंने भारतीय बाजार में लगभग 50% तक कब्जा किया है।राष्ट्र हेत् सीएसआईआर-आईएमटीईसीएचके स्ट्रेप्टोकाइनेज द्वारामूल्य सृजनलगभग 20, 000 करोड़ है।

सीएसआईआर-राष्ट्रीय धातुकर्म प्रयोगशाला (सीएसआईआर-एनएमएल)

पंचवर्षीय योजना अविध का सर्वाधिक महत्वपूर्ण सीएसआईआर प्रौद्योगिकी पुरस्कार ऐसी प्रौद्योगिकी को दिया जाता है जो कम से कम पांच वर्षों तक बाजार में स्वयं में सिद्ध की जा चुकी हो ।यह अवार्डइस वर्ष सीएसआईआर-राष्ट्रीय धातुकर्म प्रयोगशाला (सीएसआईआर-एनएमएल), जमशेदपुर को निम्न ग्रेड के खनिज निक्षेपों के सज्जीकरण हेतु कॉलम प्लवन प्रौद्योगिकी का विकास तथा वाणिज्यीकरण हेतु दिया गया है। यह प्रौद्योगिकी बेहतर बहाली वाले उच्च गुणवत्ता के खनिज संकेंद्रन के उत्पादन के लिए है। यह बहुचरणी परंपरागत प्लवन के बदले प्रयोग में लायी जाती है द्य सीएसआईआर-एनएमएल

2014-15

द्वारा विकसित इस प्लवन <mark>कालम का अपने बेह</mark>तर धातुकर्म प्रदर्शन से परंपरागत प्लवन से<mark>लों की तुलना में</mark> विस्तृत औद्योगिक स्वीकार्यता मिली है । सीएसआईआर-एनएमएल ने इस प्रौद्योगिकी का हस्तांतरण इंडियन रेयर अर्थ्स लि. और मेसर्स एमसी नल्ले भारत इंजी. कं. लि. समेत बहुतसे उद्योगों को किया है।

2.2.7 ग्रामीण विकास हेतु एस एंड टी नवोन्मेष सीएसआईआर पुरस्कार -2013

सीएसआईआर ने ग्रामीण लोगों <mark>के कष्टों के शमन</mark> अथवा इनके जीवन के रूपांतरण में सहाय<mark>क ऐसे उल्लेखनीय विज्ञा</mark>न व प्रौद्योगिकी नवोन्मेषों को सम्मान देने हेतु वर्ष 2006 में ग्रामीण विकास हेतु एस एंड टी नवोन्मेष हेतु सीएसआईआर पुरस्कार (केयर्ड) की स्थापना की ।

यह पुरस्कार ऐसे नवोन्मेष को दिया जाता है जिसने ग्रामीण लोगों के जीवन की गुणवत्ता के स्तरों में निदर्शनात्मक बदलाव किया हो अथवा प्रतिस्पर्द्धात्मक लाभ एवं सकारात्मक उपयोगकर्ता प्रतिक्रिया दिखाई हो अथवा देश में ग्रामीण रोजगार का सृजन किया हो तथा ग्रामीणिवकास के क्षेत्र में सामाजिक एवं आर्थिक रूपांतरण हेतु व्यापार करने की नई विधि दर्शाई हो। पुरस्कार में रूपए 10 लाख का नगद पुरस्कार, सम्मान पत्र एवं शील्ड होता है। वर्ष 2013 हेतु ग्रामीण विकास हेतु एस एंड टी नवोन्मेष सीएसआईआर पुरस्कार सीएसआईआर-कोशिकीय एवं आण्विक जीवविज्ञान केंद्र (सीएसआईआर-सीसीएमबी), हैदराबाद और चावल अनुसंधान निदेशालय, आईसीएआर, हैदराबाद को बेहतर सांबा महसूरी चावल की किस्म का विकास तथा परिनियोजन करने के लिए दिया गया है। यह किस्म जीवाण्विक शीर्णता प्रतिरोधी, उच्च उत्पादन और अच्छी उपज वाली है।

2.2.8 सीएसआईआर ही<mark>रक जयंती प्रौद्योगिकी पुरस्कार 2014</mark>

सीएसआईआर ने अपनी हीरक जयंती की स्मृति में वर्ष 2003 से सीएसआईआर हीरक जयंती प्रौद्योगिकी पुरस्कार (सीडीजेटीए) की स्थापना की। राष्ट्र की प्रतिष्ठा बढ़ाने वाले सर्वाधिक उत्कृष्ट प्रौद्योगिकीय नवोन्मेष को यह पुरस्कार सम्मानित करता है। भारतीय नवोन्मेषों द्वारा देश में विकसित तथा उच्चतम वैश्विक स्तरों पर खरे प्रौद्योगिकी को यह पुरस्कार दिया जाता है। भारत को वहनीय प्रतिस्पर्द्धात्मक लाभ देने वाले तथा वाणिज्यिक रूप से सफल उत्पादों, प्रकियाओं एवं सेवाओं के उद्भम प्रौद्योगिकी पर पुरस्कार के लिए विचार किया जाता है। पुरस्कार में रूपए 10 लाख की नगद राशि, सम्मान पत्र एवं शील्ड दिया जाता है। वर्ष 2014 हेतु सीएसआईआर हीरक जयंती प्रौद्योगिकी पुरस्कार मेसर्स अवरा लैबोरेट्रीज प्राइ. लिमिटेड, हैदराबाद को "आईरिनोटेकन-कालरेक्रल कैंसर हेत् एक अनोखी दवा" का विकास तथा वाणिज्यीकरण करने के लिए दिया गया।

चित्र: 2.6 गणमान्य व्यक्तियों के साथ पुरस्कार विजेता

2.2.9 स्कूली बच्चों को सीएसआईआर नवोन्मेषक पुरस्कार 2013

स्कूली बच्चों में सृजनात्मकता बढ़ाने के लिए सीएसआईआर ने सम्पूर्ण विश्व में दिनांक 26 अप्रैल, 2002 को विश्व बौद्धिक संपदा दिवस के रूप में मनाए जाने पर स्कूली बच्चों हेतु हीरक जयन्ती आविष्कार पुरस्कार की पहली बार घोषणा की। इस प्रतियोगिता का उद्देश्य स्कूली बच्चों में सृजनात्मकता एवम् नवीनता प्रस्फूटन करना और आईपीआर के बारे में जागरूकता लाना है। यह प्रतियोगिता वर्ष 2010 तक जारी रही तथा वर्ष 2011 में इसका नामकरण 'स्कूली बच्चों के लिए सीएसआईआर नवोन्मेष पुरस्कार' कर दिया गया।

2014-15

द्वितीय पुरस्कार (दो): सुश्री देबाद्रिता मंडल, बांगाबारी गर्ल्स हाई स्कूल, पुरुलिया, पश्चिम बंगाल और सुश्री एस. सुहिमता, सुश्री नंदना वार्ष्णेय, सुश्री स्वास्तिक पालित और तनुश्री दुबे, करमल कान्वेंट सीनियर सेकेंडरी स्कूल, बीएचईएल, भोपाल।

तृतीय पुरस्कारः (दो)ः मास्टर एस. विशाल, श्रीमती दुर्गादेवी चौधरी विवेकानंदन विद्यालय, शक्तिवेल नगर, कोल्हापुर, चेन्नै, मास्टर एम. टीनिथ आदित्य, हिंदू हायर सेकेंडरी स्कूल, चिट्टराम स्ट्रीट वाट्रेप, तमिलनाडु।

चतुर्थ पुरस्कारः (चार)ः सुश्री सृष्टि अस्थाना, श्री गुरू हरिकिशन मॉडलसीनियर सेकेंडरी स्कूल, चंडीगढ़, मास्टर राहुल जी एस तथा मास्टर राघव आनंद, पदम शेषाद्रि बाल भवन सीनियर सेकेंडरी स्कूल नुनगंम्बक्कर, चेन्नै और मास्टर यश शर्मा, विंधांचल एकेडमी, देवास, मध्य प्रदेश।

पंचम पुरस्करारः (दो): मास्टर आकांक्षित खुल्लर, दिल्ली पब्लिक स्कूल, आर के पुरम, नई दिल्ली तथा सुश्री जननी आर जी केंद्रीय विद्यालय नं.2 सद्रास, कलपक्कम, तमिलनाडु।

चित्र: 2.7 गणमान्य व्यक्तियों के साथ सीएसआईआर नवोन्मेष पुरस्कार विजेता

2014-15

3.0 मुख्यालय की गतिविधियां

3.1 योजना और निष्पादन प्रभाग (पीपीडी)

यह प्रभाग सीएसआईआर मुख्यालय का मुख्य केन्द्र है जिसने प्रयोगशालाओं की गतिविधियों को सहायता देना और सरकारी एजेंसियों से सम्पर्क करना जारी रखा हुआ है। यह पंचवर्षीय योजनाओं और वार्षिक योजनाओं की संकल्पना तैयार करने, विज्ञान और प्रौद्योगिकी, पर्यावरण एवम् वन विभाग संबंधी संसदीय स्थायी समिति से सम्बन्धी मुद्दों का निपटान करने आउटकम बजट तैयार करने, नई सहस्राब्दि भारतीय प्रौद्योगिकी नेतृत्व पहल (एनएमआईटीएलआई) का संचालन करने, व्यापार विकास गतिविधियों को सहायता देने, सीएसआईआर का वार्षिक प्रतिवेदन प्रकाशित करने, पुरस्कारों यथा सीएसआईआर प्रौद्योगिकी पुरस्कारों; सीएसआईआर हीरक जयंती प्रौद्योगिकी पुरस्कार; और ग्रामीण विकास हेतु विज्ञान एवम् प्रौद्योगिकी नवोन्मेषों हेतु सीएसआईआर पुरस्कार का प्रबन्धन करने, योजना परियोजनाओं का प्रबंधन करने आदि से सम्बन्धी कार्य करता है।

इस विभाग की कुछ महत्वपूर्ण गतिविधियों को निम्नांकित पैराओं में संपुटित किया है:

3.1.1 विज्ञान और प्रौद्योगिकी<mark>, पर्यावरण एवम्</mark> वन विभाग सम्बन्धी संसदीय स्थायी समिति

क. वर्ष 2013-14 हेतु अनुदान मांगें

251वां प्रतिवेदन

समिति ने 251वीं रिपोर्ट में माध्यम से 244वीं रिपोर्ट में निहित सिफारिशों पर डीएसआईआर द्वारा 'की गई कार्रवाई रिपोर्ट' पर और सिफारिशें कीं। यह रिपोर्ट 18 दिसम्बर, 2013 को संसद में प्रस्तुत की गई। समिति ने '244वीं रिपोर्ट' पर 'की गई कार्रवाई' के अधिकांश भाग को स्वीकार कर लिया तथापि, कुछ नई सिफारिशें भी की गईं। उपयुक्त 'की गई कार्रवाई विषयक टिप्पणी' राज्य सभा सचिवालय को प्रस्तुत की गई थी।

माननीय मंत्री, विज्ञान एवं प्रौद्योगिकी का वक्तव्य

माननीय मंत्री, विज्ञान एवं प्रौद्योगिकी द्वारा विभाग संबंधी संसदीय स्थायी समिति की सिफारिशों के क्रियान्वयन संबंधी स्थिति के विषय में संसद के सदन में वक्तव्य दिया जाता है। प्रभाग ने समिति की कुछ प्रमुख सिफारिशों और उन पर 'की गई कार्रवाई' के संबंध में संसद के दोनों सदनों में देने के लिए यह वक्तव्य तैयार किया गया।

ख. अनुदान मांगे 2015-16

प्रभाग ने निम्नांकित दस्तावेज़ तैयार किए और सीएसआईआर सहित डीएसआईआर की अनुदान मांगों के विचारार्थ राज्य सभा सचिवालय को प्रस्तुत किए:

वर्ष 2015-16 हेत् मांगों पर पष्ठभूमि टिप्पणी

समिति द्वारा विभाग की मांगों (योजना एवं योजनेतर दोनों के लिए बजट प्राक्कलन) पर विचार करने हेतु अनुदान मांग संबंधी पृष्ठभूमि टिप्पणी मूल दस्तावेज होता है। इसमें 2014-15 के दौरान सीएसआईआर की प्रमुख उपलब्धियां; योजनावार विवरण-उद्देश्य, 2014-15 की उपलब्धियां और 2015-16 के लिए लक्ष्य, परियोजना-वार विवरण उद्देश्य, 2014-15 की उपलब्धियां और 2015-16 के लिए लक्ष्य तथा गत तीन वर्षों एवं 2015-16 का वित्तीय विवरण (बजट प्राक्कलन संशोधित प्राक्कलन एवं वास्तविक व्यय) दिया गया है।

ग. सीएसआईआर प्रयोगशालाओं की कार्य प्रणाली पर पृष्ठभूमि टिप्पणी

नई सरकार के आने के बाद 2014 में समिति का पुनर्गठन किया गया था। सीएसआईआर के कार्यों से भली भांति परिचित होने के लिए समिति ने सीएसआईआर प्रयोगशालाओं की कार्य प्रणाली के विषय में जानने की इच्छा व्यक्त की जिससे कि वे सीएसआईआर की किसी विशिष्ट प्रयोगशाला को और अधिक निरूपण किए जाने हेतु चुन सकें। प्रभाग ने 43 पृष्ठीय दस्तावेज तैयार किया जिसमें सीएसआईआर का प्रारंभ, भूमिका और कार्य प्रणाली; सीएसआईआर सोसाइटी और शासी निकाय की भूमिका, स्थापनाओं की सूची, विभिन्न औद्योगिक क्षेत्र की वृद्धि एवं विकास से सम्बन्धित सीएसआईआर की महत्वाकांक्षाओं; राष्ट्रीय वैज्ञानिक तथा तकनीकी मानव संसाधन विकास में सीएसआईआर के प्रयासों, एनएमआईटीएलआई; हाल की प्रमुख उपलब्धियों और कुछ प्रासंगिक बिंदुओं – एमएसएमई और एसएंडटी मानव संसाधन के लिए औद्योगिक सीएसआईआर निधियों को चैनलाइज करना,

2014-15

सीएसआईआर के लिए और अ<mark>धिक स्वायत्तता, न्यू</mark>ननिधीयन और अधिक संनिघर्षण का उल्लेख <mark>किया गया था। यह द</mark>स्तावेज़ समिति को प्रस्तुत किया गया।

घ. चुनौतियों, समी<mark>क्षात्मक क्षेत्रों और मुद्दों</mark> के विशेष संदर्भ में विज्ञान एवं प्रौद्यो<mark>गिकी मंत्रालय की कार्य</mark> प्रणाली का सिंहावलोकन

विज्ञान एवं प्रौद्योगिकी मंत्रालय की कार्य प्रणाली की समीक्षा करते समय समिति ने अनेक प्रश्न उठाए जो कि मुख्यत: विज्ञान एवं प्रौद्योगिकी के प्रोन्नयन और विकास; प्रौद्योगिकी के अग्रणी क्षेत्रों में वैश्विक नेतृत्व प्राप्त करने हेतु की गई पहलों; लोगों की समस्याओं के समाधान हेतु विज्ञान एवं प्रौद्योगिकीय आविष्कारों के लाभों का उपयोग सुनिश्चित करने के लिए अनुसंधान प्रयोगशालाओं और उद्योगों के बीच समन्वय को सुदृढ़ करने हेतु उठाए गए कदम; विभिन्न योजनाओं के माध्यम से उद्योग अकादमी के सहलग्नता हेतु उठाए गए कदम; युवा पीढ़ी और महिलाओं की रूचि प्योर साइंस में बढ़ाना; यूएसए और यूके के साथ द्विपक्षीय सहयोग; सुरक्षित पेयजल पर पहलें और उपलब्धियां; और रणनीतिक क्षेत्र (सुरक्षा) के लिए स्वदेशी प्रौद्योगिकी विकास से संबंधित थे। प्रभाग ने प्रत्येक प्रश्न का उत्तर तैयार किया और समिति को प्रस्तुत किया।

3.1.2 प्रधान निदेशक, लेखा परीक्षा (वैज्ञानिक विभाग) के कार्यालय द्वारा लेखा परीक्षा

क. X प्लान नेटवर्क प्रोजेक्ट्स 2 पर वर्ष 2013 की सीएंडएजी रिपोर्ट सं.29

प्रभाग ने रिपोर्ट में दी गई प्रत्येक सिफारिश पर 'की गई कार्रवाई' संबंधी टिप्पणी निर्धारित समय में तैयार की और सीएंडएजी कार्यालय को प्रस्तुत की।

ख. वर्ष 2012-14 हेतु सीएसआईआर का लेखा परीक्षा निरीक्षण

पीडीए (एसडी) कार्यालय ने वर्ष 2012-14 के लिए सीएसआईआर मुख्यालय की लेखा परीक्षा <mark>की । प्रभाग ने ले</mark>खा परीक्षा ज्ञापनों के उपयुक्त उत्तर तैयार किए । मुख्यत: प्रश्न मुख्यालय की आरएंडडी परियोजनाओं, वार्षिक योजना एवं पंचवर्षीय योजना इत्यादि से संबंधित थे ।

3.1.3 आउट कम बजट 2015-2016

प्रभाग ने वर्ष 2015-16 के लिए आउटकम बजट तैयार किया। यह डीएसआईआर के आउटकम बजट 2015-16 का भाग बन जाता है और परिणाम स्वरूप विज्ञान एवं प्रौद्योगिकी मंत्रालय <mark>के वर्ष 2015-16</mark> के समेकित आउटकम बजट का भाग बनता <mark>है। अन्य बातों के</mark> साथ-साथ इसमें 2014-15 की योजनावार उपलब्धियां और 2015-16 के लक्ष्यों को भी सम्मिलित किया गया।

3.1.4 संसदीय प्रश्न

प्रभाग ने विभिन्न मामलों जैसे गत तीन वर्षों के दौरान सीएसआईआर की निष्पादकता, सीएसआईआर प्रयोगशालाओं का वित्तीय विवरण, जन शक्ति से संबंधित मुद्दे, नए संस्थानों की स्थापना इत्यादि पर संसदीय प्रश्नों के उपयुक्त उत्तर तैयार किए। प्रभाग द्वारा वर्ष के दौरान डीएसटी और अन्य मंत्रालयों को इनपुट्स सहित 50 से अधिक प्रश्नों (जिनमें से दो प्रश्न तारांकित थे) के उत्तर दिए गए।

3.1.5 सीएसआईआर का वार्षिक प्रतिवेदन 2013-14

सीएसआईआर की सभी घटक प्रयोगशालाओं और मुख्यालय के प्रभागों से प्राप्त इनपुट्स के आधार पर प्रभाग ने वर्ष 2013-14 के सीएसआईआर के वार्षिक प्रतिवेदन का प्रारूप तैयार किया। इस प्रतिवेदन में कार्यसार, वैज्ञानिक उत्कृष्टता, विकसित प्रौद्योगिकियां, केंद्रीय प्रबंधन क्रियाकलाप, मुख्यालय की गतिविधियां, समूह वार शीर्षस्थ 50 प्रकाशनों की सूची दी गई है।

3.1.6 नई सहस्राब्दि <mark>भारतीय प्रौद्योगिकी</mark> नेतृत्व पहल (एनएमआईटीएलआई)

नई सहस्राब्दि भारतीय प्रौद्योगिकी नेतृत्व पहल (एनएमआईटीएलआई) देश में सीएसआईआर के आर एंड डी क्षेत्र के अंतर्गत की सबसे बड़ी सार्वजनिक निजी साझेदारी प्रयास है। यह कार्यक्रम आज की प्रौद्योगिकी से आगे का प्रतीत होता है, इस प्रकार यह उत्कृष्ट सरकारी वित्त वाले आर एंड डी संस्थानों, एकडिमिया तथा निजी उद्योगों को संगठित कर भारत की एक नेतृत्व स्थिति का निर्माण करने उसे पकड़े रहने तथा बनाए रखने का प्रयत्न करता है। सरकारी वित्त एक उत्प्रेरक की भूमिका अदा करता है। यह सक्षम विजेताओं की संज्ञानता एवं विचार-विमर्श द्वारा पहचान करने, चयन तथा समर्थन करने की पूर्व शर्त पर आधारित है। एनएमआईटीएलआई ने नवोन्मेष के क्षेत्र में एक विशेष स्थान बनाया है तथा उत्कृष्ट प्रतिष्ठा प्राप्त है। इसने विभिन्न क्षेत्रों यथा - कृषि एवं वनस्पित जैवप्रौद्योगिकी, सामान्य जैव-प्रौद्योगिकी, बायोइंफॉर्मेटिक्स, ड्रग्स एवं फार्मास्यूटिकल्स, रसायन, सामग्री, पदार्थ सूचना एवं संचार प्रौद्योगिकी तथा ऊर्जा में 73 नेटवर्क परियोजनाएं विकसित की हैं। इन परियोजनाओं में विभिन्न संस्थानों के 100 औद्योगिक साझेदार तथा 300 आर एंड डी समूह सम्मिलित हैं।

2014-15

इस वर्ष के दौरान निम्न हेतु महत्वपूर्ण प्रगति हुई: सूक्ष्म पीसीआर, स्पेक्ट्रमदर्शी चिह्नक खोज के अनुप्रयोग प्रदर्शन के साथ सभी फाइबर सुपरकांटिनम लाइट सोर्स की डिजाइन तथा रचना; ईधन के रूप में हाइड्रोजन सिंहत 500 डब्ल्यूएसओएफसी का विकास तथा प्रदर्शन और संश्लेषित गैस के साथ छोटे स्तंभ का परीक्षण, उच्च निष्पादकता वाले परवलियक अपकर्ष आधारित 300 किलोवाट के सौर तापीय ऊर्जा संयंत्र का डिजाइन, विकास तथा प्रदर्शन; चिकित्सा उत्पाद प्रमाणन हेतु नानक्लोनेबल आईडी प्रौद्योगिकी; मधुमेह सूत्रण; एचआईवी तथा टीबी जानने हेतु वहनीय आवश्यक बिंदु परीक्षणार्थ नैदानिकी पद्धति; दंत अंतर्रोप-फेज-ii अध्ययन का विकास। इनके विवरण उपयुक्त समूहों में विज्ञान एवं प्रौद्योगिकी योगदानों के अध्ययन में दिए गए हैं।

3.1.7 सीएसआईआर ही<mark>रक जयंती प्रौद्योगिकी पुरस्कार</mark>

सीएसआईआर ने अपनी हीरक जयंती की स्मृति में वर्ष 2003 से सीएसआईआर हीरक जयंती प्रौद्योगिकी पुरस्कार की प्रतिष्ठापना की। राष्ट्र की प्रतिष्ठा बढ़ाने वाले सर्वाधिक उत्कृष्ट प्रौद्योगिकीय नवोन्मेष को इस पुरस्कार से सम्मानित किया जाता है। यह पुरस्कार भारतीय नवोन्मेषकों द्वारा देश में विकसित तथा उच्चतम वैश्विक स्तरों पर खरी प्रौद्योगिकी को दिया जाता है। भारत को वहनीय प्रतिस्पर्द्धात्मक लाभ देने वाले तथा वाणिज्यिक रूप से सफल उत्पादों, प्रकियाओं एवं सेवाओं के उद्भम प्रौद्योगिकी पर पुरस्कार के लिए विचार किया जाता है। पुरस्कार में रूपए 10 लाख की नगद राशि, सम्मान पत्र एवं शील्ड प्रदान की जाती है। वर्ष 2014 का सीएसआईआर हीरक जयंती प्रौद्योगिकी पुरस्कार कैंसर के रोगियों के लिए एक अद्वितीय औषधी " Irinotecan से संबंधित नवोन्मेष हेत् एवरा लैबोरेटरीज़ प्रा.लि., हैदराबाद को प्रदान किया गया है।"

3.1.8 ग्रामीण विकास हेतु एस एंड टी नवोन्मेष सीएसआईआर पुरस्कार (CAIRD)

सीएसआईआर ने ग्रामीण लोगों के कष्टों के शमन अथवा इनके जीवन के रूपांतरण में सहायक ऐसे उल्लेखनीय विज्ञान व प्रौद्योगिकी नवोन्मेषों को सम्मान देने हेतु वर्ष 2006 में ग्रामीण विकास हेतु एस एंड टी नवोन्मेष हेतु सीएसआईआर पुरस्कार (केयर्ड) की स्थापना की। यह पुरस्कार ऐसे नवोन्मेष को दिया जाता है जिसने ग्रामीण लोगों के जीवन की गुणवत्ता के स्तरों में निदर्शनात्मक बदलाव किया हो अथवा प्रतिस्पर्द्धात्मक लाभ एवं सकारात्मक उपयोगकर्ता प्रतिक्रिया दिखाई हो अथवा देश में ग्रामीण रोजगार का सृजन किया हो तथा ग्रामीण विकास के क्षेत्र में सामाजिक एवं आर्थिक रूपांतरण हेतु व्यापार करने की नई विधि दर्शाई हो। पुरस्कार में रूपए 10 लाख का नगद पुरस्कार, सम्मान पत्र एवं शील्ड होती है। वर्ष 2013 का ग्रामीण विकास हेतु एसएण्डटी नवोन्मेष सीएसआईआर पुरस्कार सीएसआईआर-कोशकीय एवं आण्विक जीव विज्ञान केन्द्र, हैदराबाद और चावल अनुसंधान निदेशालय आईसीएआर, हैदराबाद को संयुक्त रूप से उन्नत सांबा महसुरी सर्वोत्कृष्ट उच्च पैदावार, फाइनग्रेन टाइप चावल की किस्म सांबा महसूरी की जीवाण्विक शीर्णता रोधी संजात हेतु प्रदान किया गया।

चित्र: 3.1 केयर्ड की शील्ड

3.1.9 सीएसआईआर प्रौद्योगिकी पुरस्कार

1990 में स्थापित तथा वार्षिक रूप से प्रदान किया जाने वाला 'सीएसआईआर प्रौद्योगिकी पुरस्कार' बहु-विषयक इन-हाउस समूह के प्रयासों को उत्साहित एवं प्रेरित करने तथा प्रौद्योगिकी विकास, स्थानांतरण तथा वाणिज्यीकरण के लिए बाह्य अंतःक्रिया हेतु प्रदान किया जाता है। इन पुरस्कारों के अंतर्गत प्रत्येक के लिए एक पुरस्कार (I) लाइफ साइंसेज (II) अभियांत्रिकी समेत भौतिक विज्ञान (III) नवोन्मेष (IV) व्यापार विकास एवम् प्रौद्योगिकी विपणन तथा (V) पंचवर्षीय योजना अवधि की सबसे महत्वपूर्ण सीएसआईआर प्रौद्योगिकी (पांच वर्षों में एक बार प्रदान किया जाता है, योजना अवधि के अनुरूप ऐसी प्रौद्योगिकी, जो पांच वर्षों से बाजार में प्रमाणित हो चुकी हो)। पंचवर्षीय योजना अवधि की सबसे महत्वपूर्ण सीएसआईआर प्रौद्योगिकी के लिए रुपए 5 लाख का नगद पुरस्कार प्रदान किया जाता है। इसको छोड़कर प्रत्येक प्रौद्योगिकी पुरस्कार के अन्तर्गत रुपए 2 लाख का नगद पुरस्कार होता है। इसके अतिरिक्त पुरस्कार विजेताओं को एक फलक तथा एक प्रशंसात्मक पत्र भी प्रदान किया जाता है।

2014-15

विज्ञान एवं प्रौद्योगिकी तथा पृथ्वी विज्ञान राज्य मंत्री (स्वतंत्र प्रभार) एवं उपाध्यक्ष सीएसआईआर डॉ. जितेन्द्र सिंह ने 26 सितम्बर, 2014 को सीएसआईआर के स्थापना दिवस के अवसर पर सीएसआईआर प्रौद्योगिकी पुरस्कार प्रदान किए। ये पुरस्कार इंजीनियरी सिंहत भौतिक विज्ञान में सीएसआईआर-एनसीएल को ठोस उद्मेरक और बायोडीज़ल हेतु सतत प्रक्रम का विकास करने हेतु; नवोन्मेष में एफसीसी गैसोलीन के सी6 हार्ट कट से यूएस ग्रेड गैसोलीव एवं हाई प्योरिटी बेंजीन के एक साथ उत्पादनार्थ प्रक्रम विकसित करने हेतु सीएसआईआर-आईआईआर को, पंचवर्षीय योजना अविध की सर्वाधिक महत्वपूर्ण प्रौद्योगिकी में निम्न ग्रेड खनिज निक्षेपों के सज्जीकरण हेतु कॉलम फ्लोटेशन प्रौद्योगिकी के विकास हेतु सीएसआईआर-एनएमएल को; और व्यवसाय विकास एवं प्रौद्योगिकी विपणन में उनके ज्ञानाधार हेतु व्यवसाय एवं विपणन को महत्वपूर्ण रूप से बढ़ाने हेतु सीएसआईआर-आईएमटीईसीएच को प्रदान किए गए।

3.1.10 नेटवर्क के माध्यम से सौर ऊर्जा उपयोगार्थ प्रौद्योगिकियां एवं उत्पाद (टीएपीएसयूएन)

सीएसआईआर और एमएनआरई की संयुक्त पहल-टीएपीएसयूएन कार्यक्रम कार्यान्वयनाधीन है। कार्यक्रम ने सीएसआईआर के भीतर अनुसंधान संस्थानों के नेटवर्क का सृजन किया है। सीएसआईआर-नेटवर्क ऑफ इंस्टीट्यूट्स फॉर सोलर एनर्जी (सीएसआईआर-एनआईएसई) नामक परोक्ष संस्थान सौर ऊर्जा के क्षेत्र में प्रौद्योगिकियों, उत्पादों और सिस्टम्स के विकास में अग्रणी अनुसंधान कर रहा है। टीएपीएसयूएन कार्यक्रम के अंतर्गत परियोजना मुख्यत: सौर ऊर्जा के ऑफ-ग्रिड अनुप्रयोगों के विकासार्थ उन्मुख है। यह प्रभाग इसके कार्यान्वयन में घनिष्ठ रूप से जुड़ा है और निर्धारित थीम्स के अन्तर्गत परियोजनाओं की गतिविधियों की नियमित मॉनीटरिंग कर रहा है।

परम्परागत ओपीवी डिवाइसेज ($10~\mathrm{mm}^2$ एरिया) आधारित PCE- $10/\mathrm{PC71BM}$ में \sim 7.3% PCE प्राप्त की गई । अत्यन्त उच्च ZT $\sim \!\! 2.1$ सहित नैनोस्ट्रक्चर्ड $m Cu_2Se$ का विकास किया गया। रिकॉर्ड m ZT (n-type $\sim \!\! 1.5$ और p-type 1.2) सहित n- और p-type दोनों ${
m SiGe}$ विकसित किए गए। ${
m 500}$ से ${
m 750}~{
m nm}$ ब्रॉड एमिशन वाले ${
m Bi}$ डोपित क्षारीय युक्त और आर्द्रता प्रतिरोधी ${
m Ba-Al}$ मेटाफॉस्फेट ग्लास की रिपोर्ट की गई। पाइरीनॉक्सोडाइज़ो<mark>ल डेरीवेटिव्स पर आधारि</mark>त नवीन हरे फ्लॉरेसन्ट उत्सर्जको<mark>ं को डिज़ाइन औ</mark>र विकसित किया गया। सीएसआईआर-सीईईआरआई में निर्मित LEDs के साथ 3-W मल्टी $\;\;$ LED सौर ऊर्जित लैम्प विकसित किया गया । $\;$ ITO(ड्रैन)/ $\;$ HAT-CN(3nm)/ $\;$ $\;$ $\;$ $\;$ $\;$ $\;$ सीईईआरआई में निर्मित $\;$ $\mathrm{NPD}(30\mathrm{nm})/\mathrm{Alq3}(50\mathrm{nm})/\mathrm{Al}$ (सोर्स) / LiF / Al (गेट) स्ट्रक्चर के साथ ग्रीन लाइटएमिटिंगस्मॉल मालिक्यूल के रूप में " $\mathrm{Alq3}$ " के प्रयोग से ${
m VOLET}$ डिवाइस का निर्माण किया गया। - $2~{
m V}$ के स्थिरांक गेट वोल्टेज (${
m Vg}$) पर 160 ${
m cd/m^2}$ की ज्योतिर्मयता प्राप्त की गई। 20 m kWp ग्रिड इन्टरेक्टिव कम स्टैंड-एलोन इनवर्टन विकसित किया गया था और सीएसआईआर-सीएमईआरआई4 रिअर में अधिष्ठापित 100~
m Kwpसोलर ${
m PV}$ पावर प्लांट पर इस<mark>का मूल्यांकन किया</mark> जा रहा है । ग्रिड टाइड/स्टैंड एलोन अनुप्र<mark>योग हेतु ${
m PV}$ पॉवर्ड $250~{
m W}~$ माइक्रो इन्वर्टर तथा वॉटर</mark> पम्पिंग अनुप्रयोग हेतु $5~\mathrm{Kw}~\mathrm{PV}$ पॉवर्ड सिस्टम का विकास किया गया और इसका परीक्षण किया जा रहा है। $2~\mathrm{V}/~3~\mathrm{Ah}$ लेड एसिड सैल में 45-50~
m Wh/kg एनर्जी डेंसिटी प्राप्त की गई । लीथियम ऑयन सेल के लिए बढ़ी हुई क्षमता (500~
m mAh/g) सहित नवीन एनोडमेटेरियल का विकास किया गया । नए विकसित कैथोड मेटेरियल (लीथियम ऑयन सेल) के लिए $\sim \! 190~{
m mAh/g}$ की क्षमता बढ़ाई गई । ${
m Li ext{-}ion}$ सेल के लिए नवीन सेरेमिक आलेपित सेपरेटर का विकास किया गया और इसकामूल्यांकन किया जा रहा है ${
m Li ext{-}ion}$ सेल के लिए इलेक्ट्रोलाइट तैयार किया गया । ${
m DSSC}$ सेल तैयार किया गया था और स्मॉल डिवाइस $\sim\!\!9\%$ दक्षता हासिल की गई। m VHF और m ~RF. का प्रयोग करके $m 10x10~cm^2$ पर सिंगल जंक्शन m a- $\mathrm{Si:H}~\&~\mu c ext{-}\mathrm{Si:H}~p ext{-}\mathrm{i-n}$ सोलर सेल्स विकसित किए गए।यूनिट सेल (औसत 5.6%) की 8.4% की दक्षता वाले PECVD प्रक्रम। $2\mathrm{x}2$ cm2 पर CIGS ग्रोथ हेतु नैनो इंक डियोजिशन हेतु रसायन प्रक्रम । आइसोलेटेड Pt अथवा वेल डिस्पर्स्ड प्लेटिनाइज्ड टिटेनिआ और Cu-Pt का विकास किया गया था जिसे $10000~\mu mols~h$ -1 (UV-विजिबल) के HER सहित सर्वाधिक आशाजनक फोटोकैटालिस्ट पाया गया। सूर्य के प्रकाश में लगभग 16.5 के HER वाले उत्तम निष्पादकता दर्शाने वाले प्लाज्मोनिक $\operatorname{Zn/ZnO}$ हीट्रोजंक्शन्स का विकास किया गया ।

मानव संसाधन विकास समूह (एचआरडीजी)

मानव संसाधन विकास समूह (एचआरडीजी), राष्ट्रीय स्तर पर विज्ञान एवं प्रौद्योगिकी के कार्मिकों के विकास एवं शिक्षण हेतु प्रतिबद्ध है। यह विश्वविद्यालयों/आर एंड डी संस्थानों में कार्यरत वैज्ञानिकों/प्रोफेसरों को अनुसंधान अनुदान के द्वारा वैज्ञानिक एवं औद्योगिक अनुसंधान का प्रसार, मार्गदर्शन तथा समन्वयन करता है। एचआरडीजी गतिविधियों के अंतर्गत राष्ट्रीय पात्रता परीक्षा (नेट) के द्वारा जूनियर रिसर्च फैलो (जेआरएफ) का चयन; सीनियर रिसर्च फैलो (एसआरएफ) का चयन, एसआरएफ एक्सटेंडेड, रिसर्च एसोसिएट (आरए); सीनियर रिसर्च एसोसिएट्स (एसआरए) तथा श्यामा प्रसाद मुखर्जी फैलोज (एसपीएमएफ); शांति स्वरूप भटनागर पुरस्कार (एसएसबी); सीएसआईआर युवा वैज्ञानिक पुरस्कार (वाईएसए); तथा जी.एन.रामचंद्रन स्वर्ण पदक, विश्वविद्यालयों/आर एंड डी संगठनों में बाह्य अनुसंधान निधियन (ईएमआर), योजना; तथा यात्रा/सम्मेलन/परिसंवाद अनुदान सिम्मिलत हैं। वर्ष के दौरान एचआरडी समूह की महत्वपूर्ण उपलब्धियां निम्नवत हैं:

2014-15

3.2.1 राष्ट्रीय विज्ञान एवं तकनीकी जनशक्ति विकास

3.2.1.1 जेआरएफ (नेट)

जूनियर रिसर्च फैलोशिप(जेआरएफ) तथा लेक्चररशिप हेतु सीएसआईआर-यूजीसी राष्ट्रीय पात्रता परीक्षा(नेट) 22 जून, 2014 को देश भर में 26 केद्रों पर आयोजित की गई। 2, 64, 786 अभ्यर्थी पंजीकृत हुए एवं 1, 44, 591परीक्षा में उपस्थित हुए। सीएसआईआर-यूजीसी नेट जून, 2014 का परिणाम 15 सितम्बर, 2014 को घोषित किया गया था। कुल 2431अभ्यर्थी सीएसआईआर/यूजीसी जेआरएफ हेतु उत्तीर्ण हुए, तथा 2897 अभ्यर्थी केवल लेक्चररशिप हेतु उत्तीर्ण हुए।

विषय	रसायन विज्ञान	पृथ्वी विज्ञान	जीवन विज्ञान	गणित विज्ञान	भौतिक विज्ञान	इंजीनियरिंग विज्ञान	कुल
जेआरएफ उत्तीर्ण	736	148	832	211	260	244	2431
एलएल उत्तीर्ण	799	181	1105	307	505		2897

जेआरएफ उत्तीर्ण 2431 अभ्यर्थियों में से 1231 को सीएसआईआर द्वारा तथा शेष को यूजीसी द्वारा सहायता प्रदान की जाएगी।

सीएसआईआर- यूजीसी नेट दिसम्बर परीक्षा का आयोजन 21दिसम्बर, 2014 को किया गया। 2, 40, 098 अभ्यर्थी पंजीकृत हुए तथा 1, 51, 140 परीक्षा में उपस्थित हुए। परीक्षा परिणाम 27 मार्च, 2015 को घोषित किया गया। कुल 1801अभ्यर्थी सीएसआईआर/यूजीसी जूनियर रिसर्च फैलोशिप एवं लेक्चररिशप हेतु तथा 2145 अभ्यर्थी केवल लेक्चररिशप हेतु उत्तीर्ण हुए।

विषय	रसायन विज्ञान	पृथ्वी विज्ञान	जीवन विज्ञान	गणित विज्ञान	भौतिक विज्ञान	इंजीनियरिंग विज्ञान	कुल
जेआरएफ उत्तीर्ण	473	90	575	189	236	238	1801
एलएल उत्तीर्ण	695	92	784	233	341		2145

जेआरएफ हेत् उत्तीर्ण 1801 अभ्यर्भियों में से 1020 को सीएसआईआर द्वारा तथा शेष को यूजीसी द्वारा सहायता प्रदान की जाएगी।

3.2.1.2 श्यामा प्रसाद मुखर्जी फैलोशिप (एसपीएमएफ)

एसपीएम फैलोशिप योजना का उद्देश्य वैज्ञानिक अनुसंधान के अनुसरण हेतु उभरते प्रतिभावान वैज्ञानिकों की पहचान करना तथा उन्हें विकसित करना है। इस योजना के अन्तर्गत यह फेलोशिप जेआरएफ-नेट विद्यार्थियों में से कुछ शीर्ष विद्यार्थियों को सामान्य विज्ञान की पांच शाखाओं में प्रदान किया जाता है। अप्रैल, 2014 –मार्च, 2015 के दौरान 6 शाखाओं में 65 छात्रों को एसपीएम फेलोशिप प्रदान की गई।

3.2.1.3 सीनियर रिसर्च फैलोशिप (एसआरएफ), एसआरएफ एक्सटेंडेड तथा रिसर्च एसोसिएटशिप (आरए)

एसआरएफएस, एसआरएफ (<mark>विस्तारित) और</mark> आरएएस के लिए 14 शाखाओं में चयन हेतु <mark>विशेषज्ञ समिति</mark> की बैठक नवम्बर, 2014 से मार्च, 2015 के दौरान हुई। साक्षात्कार हेतु बु<mark>लाए गए कुल 177</mark>8 अभ्यर्थियों में से चयनित किए गए एसआरएफ, एसआरएफ (विस्तारित) तथा आरए की संख्या क्रमानुसार 333 तथा 1112 थी।

3.2.1.4 सीनियर रिसर्च <mark>एसोसिएटशिप (एसआर</mark>ए)/साइंटिस्ट पूल स्कीम

सीनियर रिसर्च एसोसिएटशिप का उद्देश्य उच्च प्रशिक्षित भारतीय वैज्ञानिकों, अभियंताओं, प्रौद्योगिकीविदों, चिकित्सा कार्मिकों- जो देश में स्थायी रोजगार में नहीं हैं तथा उन लोगों समेत जो विदेशी राष्ट्रों से वापस लौटे हैं, को अल्पकालिक निधि प्रदान करना है। वर्ष 2014-15 के दौरान 76 सीनियर रिसर्च एसोसिएट्स का चयन किया गया और 31 मार्च, 2015 को उनकी कुल संख्या 136 थी।

2014-15

3.2.1.5 गेट उत्तीर्ण अभियांत्रिकी तथा फार्मेसी स्नातकों हेतु जूनियर रिसर्च फैलोशिप (जेआरएफ-गेट)

सीएसआईआर ने 2002 में जूनियर रिसर्च फैलोशिप(जेआरएफ-गेट) के रूप में एक रिसर्च फैलोशिप आरम्भ किया जो-बीई/बी.टेक/बी.आर्क./बी.फार्मा डिग्री के साथ गेट (GATE) उत्तीर्ण अभ्यर्थियों को अभियांत्रिकी तथा फार्मास्युटिकल विज्ञान में पीएचडी अनुसंधान के लिए प्रदान की जाती है। इस स्कीम में चयनित जेआरएफ छात्रों को अत्याधुनिक आर एंड डी सुविधा सहित, सीएसआईआर-वैज्ञानिकों के साथ कार्य करने का एक अच्छा अवसर प्राप्त होता है। वर्ष 2014-15 के दौरान पच्चीस (25) जेआरएफ-गेट फेलोशिप्स प्रदान की गई और वर्तमान में सीएसआईआर की विभिन्न प्रयोगशालाओं में लगभग 142 जेआरएफ-गेट फेलोज़ कार्य कर रहे हैं।

3.2.1.6 सीएसआईआर नेहरू साइंस पोस्ट-डॉक्टरल रिसर्च फैलोशिप स्कीम

सीएसआईआर नेहरु साइंस पोस्ट-डॉक्टरल रिसर्च फैलोशिप स्कीम वर्ष 2008 में सामान्य विज्ञान, अभियांत्रिकी, चिकित्सा, तथा कृषि के विशेष क्षेत्रों में अनुसंधान हेतु इच्छुक युवा अनुसंधानकर्ताओं की पहचान करने तथा उनका विकास करने हेतु स्थापित की गई। योजना का मुख्य उद्देश्य सलाहकार से अपने अंतरण को स्वतंत्र अनुसंधान कैरियर हेतु सहायता प्रदान करना है। वर्ष 2014-15 के दौरान कठोर मानकों का अनुसरण करते हुए साक्षात्कार हेतु बुलाए गए 41 अभ्यर्थियों में से ग्यारह (11) अभ्यर्थियों का चयन किया गया था और 31 मार्च, 2015 को उनकी कुल संख्या 58 थी।

3.2.2 उत्कृष्टता को प्रोत्साहन एवम् मान्यता

3.2.2.1 सीएसआईआर युवा वैज्ञानिक पुरस्कार

युवा वैज्ञानिक पुरस्कार 35 वर्ष से कम आयु के वैज्ञानिकों को, विज्ञान एवं प्रौद्योगिकी (एसएंडटी) के 5 विषयों में इन-हाउस उत्कृष्टता की पहचान के लिए प्रदान किया जाता है। वर्ष 2014 में युवा वैज्ञानिक पुरस्कारों हेतु 6 वैज्ञानिकों का चयन किया गया जिसमें से दो रसायन विज्ञान और एक-एक जीव-विज्ञान, इंजीनियरिंग, भौतिक (उपकरण सिहत) एवं पृथ्वी, वायुमंडल, महासागर एवं गृहीय विज्ञान में से थे। ये पुरस्कार 26 सितम्बर, 2014 को सीएसआईआर-राष्ट्रीय भौतिक प्रयोगशाला, डॉ. के एस कृष्णन मार्ग, नई दिल्ली में आयोजित सीएसआईआर स्थापना दिवस समारोह में डॉ. जितेन्द्र सिंह, माननीय मंत्री विज्ञान एवं प्रौद्योगिकी तथा पृथ्वी विज्ञान द्वारा प्रदान किए गए। सीएसआईआर स्थापना दिवस व्याख्यान प्रो. विजय राघवन, एफआरएस, सिवव, जैव प्रौद्योगिकी विभाग, भारत सरकार द्वारा दिया गया।

3.2.2.2 विज्ञान एवं प्रौद्योगिकी हेतु शांति स्वरूप भटनागर पुरस्कार

विज्ञान एवं प्रौद्योगिकी हेतु शांति स्वरूप भटनागर पुरस्कार (एसएसबी) प्रत्येक वर्ष 45 वर्ष से कम आयु के भारतीय वैज्ञानिकों को विज्ञान एवं प्रौद्योगिकी के सात (7) विषयों में अनुप्रयुक्त तथा मौलिक कार्य के उत्कृष्ट एवं विशेष योगदान के लिए प्रदान किया जाता है। 26 सितम्बर, 2014 को सीएसआईआर-एनपीएल, नई दिल्ली में आयोजित सीएसआईआर स्थापना दिवस समारोह में डी सीएसआईआर द्वारा वर्ष 2014 के शान्ति स्वरूप भटनागर पुरस्कार हेतु चयनित दस (10) वैज्ञानिकों के नामों की घोषणा की गई।

3.2.2.3 जीव विज्ञान तथा प्रौद्योगिकी में उत्कृष्टता हेतु जीएन रामचन्द्रन स्वर्ण पदक

जीवविज्ञान तथा प्रौद्योगिकी में उत्कृष्टता हेतु जीएन रामचन्द्रन स्वर्ण पदक प्रत्येक वर्ष अन्तर्विषयी विषय/जीवविज्ञान तथा प्रौद्योगिकी के क्षेत्रों में अनुप्रयुक्त तथा मौलिक कार्य के उत्कृष्ट एवं विशेष अनुसंधान के लिए प्रदान किया जाता है। वर्ष 2014 के जी एन राम चन्द्रन गोल्ड मेडल हेतु भारतीय विज्ञान संस्थान, बंगलौर के प्रो. उमेश वार्ष्णेय का चयन किया गया।

3.2.3 अनुसंधान एवं विकास को प्रोत्साहन देने हेतु बाह्य अनुसंधान योजनाओं को <mark>निधि उपलब्ध करा</mark>ना

सीएसआईआर कृषि, इंजीनियरी <mark>चिकित्सा स</mark>हित विज्ञान एवं प्रौद्योगिकी के क्षेत्र में अनुसंधान <mark>को बढ़ावा देने हेतु</mark> वित्तीय सहायता प्रदान करता है। यह विश्वविद्यालयों/अकादिमक संस्थानों/भारतीय प्रौद्योगिकी संस्थानों इत्यादि में कार्यरत प्रोफेसरों/वैज्ञानिकों को अनुसंधान अनुदान के रूप में प्रदान की जाती है। वर्ष 2014-15 के दौरान संस्तुत अनुसंधान योजनाओं की संख्या निम्नवत है:

2014-15

योजना	विचार किए गए प्रस्तावों	संस्तुत प्रस्ताव	नवीकृत प्रस्ताव
	की संख्या		
सामान्य	1012	233	1007
अवकाश प्राप्त वैज्ञानिक	90	30	123
प्रायोजित	11	2	31
इकमुश्त अनुदान	4	1	-

3.2.4 यात्रा/सम्मेलन अनुदान

सीएसआईआर द्वारा विदेश में अन्तर्राष्ट्रीय सम्मेलनों में अनुसंधान पत्र प्रस्तुत करने हेतु युवा अनुसंधानकर्ताओं को यात्रा अनुदान प्रदान किया जाता है। 1700 छात्रों के अनुदान यात्रा आवेदनों पर विचार किया गया और 290 को सहायता प्रदान करने हेतु संस्तुति की गई। यात्रा अनुदान समिति ने नियमित कर्मचारियों से यात्रा हेतु सहायता के लिए प्राप्त 631 आवेदनों पर भी विचार किया और सहायतार्थ 96 मामलों की संस्तुति की। राष्ट्रीय/अन्तर्राष्ट्रीय सम्मेलनों/संगोष्ठियों/कार्यशालाओं इत्यादि के आयोजनार्थ विश्वविद्यालयों/संस्थानों/वैज्ञानिक सोसाइटियों इत्यादि से प्राप्त कुल 1788 प्रस्तावों पर विचार किया गया और 249 मामलों को सहायतार्थ संस्तुत किया गया।

योजनाएं	विचार की गई कुल संख्या	संस्तुत कुल संख्या
छात्रों को यात्रा अनुदान	1700	290
नियमित कर्मचारियों को यात्रा अनुदान	631	96
संगोष्ठी अनुदान	1788	249

3.2.5 सीएसआईआर प्रयो<mark>गशलाओं द्वारा-सं</mark>काय प्रशिक्षण एवं अभिप्रेरण तथा स्कूल <mark>एवं महाविद्यालय</mark> का अंगीकरण

इस योजना का मुख्य उद्देश्य- <mark>स्कूल तथा स्नातक</mark> स्तर पर छात्रों तथा विज्ञान के शिक्षकों को प्रशिक्ष<mark>ण तथा अ</mark>भिप्रेरणात्मक कार्यक्रम के द्वारा विज्ञान शिक्षा में अभिरुचि, जिज्ञासा तथा उत्कृष्टता को बढ़ावा देना है। इस योजना का कार्यान्वयन सीएसआईआर प्रयोगशलाओं के माध्यम किया जाता है।

3.3 अन्तर्राष्ट्री<mark>य विज्ञान तथा प्रौद्योगिकी</mark> कार्य निदेशालय (आईएसटीडी)

3.3.1 विकास शील देशों हेतु सीएसआईआर-टीडब्ल्यूएएस फेलोशिप्स

सीएसआईआर-टीडब्ल्यूएएस इटली के सहयोग से विकासशील देशों के स्कॉलर्स को सीएसआईआर संस्थानों से पोस्ट ग्रेजुएट (पीएच.डी. करने के लिए) एवं पोस्ट डॉक्टरल अनुसंधानकर्ताओं को फेलोशिप प्रदान करता है। विभिन्न देशों जैसे बंग्लादेश, कैमरून, कोट डिलवोर, ईरान, मलावी, मॉरिशस, नेपाल, नाइजीरिया, तन्ज्ञानिया और टोगो के चौबीस अनुसंधानकर्ताओं (चार पोस्ट डॉक्टरल फेलोशिप और 20 पोस्ट ग्रेजुएट फेलोशिप) को सीएसआईआर प्रयोगशाला में जैव चिकित्सा, रसायन, पर्यावरण, पृथ्वी, पदार्थ विज्ञान, जीवन विज्ञान और खाद्यविज्ञान और प्रौद्योगिकी के क्षेत्र में 12 माह से चार वर्षोंकी अवधि के लिए सीएसआईआर-टीडब्ल्यूएएस प्रदान की गई।

3.3.2 अन्तर्राष्ट्रीय सम्मेलन/कार्यशालाएं

प्रभाग सीएसआईआर की घटक प्रयोगशालाओं को अन्तर्राष्ट्रीय वैज्ञानिकों/विशेषज्ञों के साथ अन्तर्राष्ट्रीय सम्मेलन/सेमीनार/संगोष्ठियों के आयोजन में सहायता करता है। वर्ष के दौरान 11 प्रयोगशालाओं को इस प्रकार के 18 आयोजन करने की स्वीकृति प्रदान की गई जिसमें सिम्मिलित हैं: सीएसआईआर-सीबीआरआई; सीएसआईआर-सीआईएमएपी; सीएसआईआर-सीआईएमएफईआर; सीएसआईआर-आईजीआईबी; सीएसआईआर-आईआईआर-एनसीएल; सीएसआईआर-एनजीआरआई; सीएसआईआर-एनएमएल; और सीएसआईआर-एसईआरसी। कुछ प्रमुख सम्मेलन/संगोष्ठी हैं: 29-30 अक्तूबर, 2014 को सीएसआईआर-एनसीएल, पुणे में "कैटालिसिस फॉर सस्टेनेबल एण्ड एन्वायरनमेंटल कैमिस्ट्री" पर तृतीय इंडो-फ्रेंच सिम्पोजियम, 6-12 अक्तूबर, 2014 के दौरान सीएसआईआर-एनजीआरआई, हैदराबाद

2014-15

में ''जियो मेग्नेटिक ऑब्ज़र्वेटरी <mark>इंस्टूमेंट्स, डाटा</mark> एक्यूजिशन एण्ड प्रोसेसिंग'' पर XVI IAGA कार्यशाला और 14-17 दिसम्बर, 2014 के दौरान जर्मनी आधारित अन्तर्राष्ट्रीय एजेंसी ईएमबीओ की स्पांसरशिप में सीएसआईआर-सीसीएमबी, हैदराबाद के द्वारा ''ईएमबीओ वर्कशॉप ऑन अपस्ट्रीमएण्ड डाउन स्ट्रीम ऑफ होक्स जींस'' अन्तर्राष्ट्रीय सम्मेलन।

3.3.3 जर्मनी के साथ द्विपक्षीय सहयोग

सीएसआईआर और प्रोजेक्ट मेनेजमेंट एजेंसी, जर्मन एयरोस्पेस सेंटर (डीएलआर) ऑव द फेडरल मिनिस्ट्री फॉर एजूकेशन एण्ड रिसर्च (बीएमबीएफ) जर्मनी अन्तर्राष्ट्रीय द्विपक्षीय करार के तत्वावधान में वैज्ञानिक अनुसंधान एवं प्रौद्योगिकीय विकास में सहयोग के विशेष प्रबंध के कार्यान्वयन हेतु नोडल एजेंसियां हैं। सीएसआईआर भारत और बीएमबीएफ का अन्तर्राष्ट्रीय विज्ञान एवं प्रौद्योगिकी प्रभाग (आईएसएडीएस) दोनों तरफ से समन्वयक हैं। द्विपक्षीय सहयोग का उद्देश्य सीएसआईआर और बीएमबीएफ, जर्मनी द्वारा सहमति के अनुरूप आपसी रूचि की परियोजनाओं को आरम्भ करना है। बीएमबीएफ (फेडरल मिनिस्ट्री ऑव एजूकेशन एण्ड रिसर्च) जर्मनी के साथ सीएसआईआर प्रयोगशालाओं द्वारा (2015-2017) निम्नांकित पांच परियोजनाएं आरंभ की जा चुकी हैं:

- सीएसआईआर-सीएफटीआरआई, भैसूर एवं फ्रेई यूनीवर्सिएट बर्लिन, जर्मनी के बीच "ऑल्टरेशन ऑव द कैफीन कंटेट ऑव कॉफी प्लांट्स बाई मेनीपुलेशन ऑव प्लांट ज़ेन्थोनाइन मेटाबॉलिज्म यूजिंग टीएएलईएन जेनेटिक सीज़र्स"।
- II. सीएसआईआर-सी<mark>जीआरआई और टेकनीश यूनिवर्सटाट ब्रांशविग्र, श्लेनिटस्तर 22, 38106 ब्रांशवेग,</mark> जर्मनी के बीच "थ्यूलियम-डोप्ड फाइबर लेजर एट 2µm फॉर सर्जिकल यूरोलॉजी"
- III. सीएसआईआर-एनबीआरआई, लखनऊ और यूनिवर्सिटी ऑव कॉलोग्ने, जुल्पिचर स्ट्रीट, 47बी, 50674, कॉलोग्ने, जर्मनी के बीच "लाइट डिपेंडेंट फलेवोनोल बायोसिंथेसिस बाई एमबीईबी ट्रांस्क्रिप्शंस फैक्टर्स: आइडेंटिफिकेशन ऑव इंटर एक्टिंग फैक्टर्स"
- IV. सीएसआईआर-एनएएल, बेंगलूरु और यूनिवर्सिटी ऑव दिसबर्ग-एसेन, एसेन, जर्मनी के बीच बहुपरतीय पाइजोइलेक्ट्रिक स्टेक्स/उपकरणों के इस्तेमाल से वाइब्रेशन एनर्जी हार्वेस्टिंग: सीसायुक्त एवम् सीसा मुक्त पदार्थ प्रणालियों विषयक तुलनात्मक अध्ययन; और
- V. सीएसआईआर-आईआईपी, देहरादून एवम् लेहरस्तुहल फर टेक्नीश थर्मोडायनेमिक, जर्मनी के बीच ''अपशिष्ट प्लास्टिक से डीजल की दहन एवं उत्सर्जन की विशेषताएं'

3.3.4 विभिन्न परियोजनाओं की सुरक्षा एवम् सुग्राहिता क्लीयरेंस

सीएसआईआर को सीएसआईआर, डीएसटी, डीबीटी एवं आईएनएसए के द्विपक्षीय एसएंडटी सहयोग कार्यक्रम के तहत परियोजना प्रस्तावों की सुरक्षा एवं सुग्राहिता क्लीयरेंस मांगने हेतु विभिन्न प्रयोगशालाओं/संस्थानों से संयुक्त परियोजना प्रस्ताव प्राप्त होते हैं। इस वर्ष के दौरान 25 संयुक्त परियोजना प्रस्तावों पर सुरक्षा एवं सुग्राहिता अनुमित हेतु कार्रवाई की गई। कुछ महत्वपूर्ण में निम्नवत सिम्मिलित हैं: यूक्रेन-भारतीय संयुक्त आरएंडडी परियोजना (जुलाई, 2015) के अंतर्गत सीएसआईआर-एनबीआरआई, लखनऊ और एम.एच. खोलोडनी इंस्टिट्यूट ऑव बोटनी, यूक्रेन के बीच "फाइलोजेनेटिक ग्रुपिंग साउथ एशियन लिचेंस ऑव द टेलोशिटेसीए (Ascomycota) फॉर बायोटेक्नोलॉजिकल परपजेज"; डीएसटी-रिसएन फाउंडेशन फॉर बेसिक रिसर्च (आरएफबीआर) एसएंडटी कॉऑपरेशन प्रोग्राम के तहत सीएसआईआर-सीजीसीआरआई, कोलकाता और एम.वी. लोमोनोसोव मॉस्को स्टेट यूनिवर्सिटी ऑव रिसयन एकेडमी ऑव साइसेस, मॉस्को, रिसया के बीच "स्टडीज ऑव मल्टीकॉम्पोनेंट हेफनियम-सिलिका ग्लास सिरामिक बेस्ड ऑप्टिकल फाइबर्स डोप्ड वीद रेअर अर्थ्स एंड मेटल नैनो पार्टिकल्स फॉर ब्रॉडबैंड लाइट सोर्सेस फॉर 2 टू 3 माइक्रोन स्पेक्ट्रल रेंज"; डीएसटी-रिसयन फाउंडेशन फॉर बेसिक रिसर्च (आरएफबीआर) एसएंडटी कॉऑपरेशन प्रोग्राम (6 जुलाई, 2015) के अंतर्गत सीएसआईआर-एनआईआईएसटी, तिक्तवनंतपुरम और ए.एन. फ्रमिकन इंस्टिट्यूट ऑव फिजिकल कैमिस्ट्री एंड इलेक्ट्रोकेमिस्ट्री ऑव रिसयन एकेडमी ऑव साइसेस, मॉस्को, रिशया के

2014-15

बीच ''चार्ज कैरियर ट्रांस्पोर्ट इन <mark>पॉलीमेरिक एंड</mark> ऑर्गेनिक सेमिकंडिक्टंग थिन फिल्म्स फॉर ए<mark>प्लीकेशन इन</mark> लाइट एमिटिंग डाईओड्स, फील्ड इफेक्ट ट्रांजिस्टर्स एंड फोटो वोल्टैक डिवाइसिस"

3.3.5 विदेशी वैज्ञानिकों/<mark>शोधकर्ताओं द्वारा</mark> सीएसआईआर के संस्थानों के तदर्थ दौरे

प्रभाग शैक्षिक एवं तकनीकी चर्चाओं के लिए सीएसआईआर की विभिन्न प्रयोगशालाओं के विदेशी नागरिकों के तदर्थ दौरों पर भी कार्रवाई करता है। इस वर्ष के दौरान एमईए/एमएचए और महानिदेशक, सीएसआईआर का अनुमोदन मांगने वाले 21 दौरे प्रस्तावों पर कार्रवाई की गई।

3.3.6 अंतर्राष्ट्रीय संगठनों के साथ समझौता ज्ञापन

इस वर्ष के दौरान प्रभाग ने सीएसआईआर की प्रयोगशालाओं एवं अंतर्राष्ट्रीय संगठनों के बीच वैज्ञानिक एवं तकनीकी सहयोग हेतु दो समझौता ज्ञापनों पर हस्ताक्षर करने को सुगम बनाया। ये हैं: सीएसआईआर एवं स्टिफ्टेल्सेन सिनटेफ नॉर्वे; और सीएसआईआर-सीईईआरआई एवं इस्टिट्येतो इटेलियनो डिटेक्नोलॉजियां (आईआईटी); जीनोवा, इटली। सीएसआईआर ने आगामी वर्षों में आपसी हित के उभरते क्षेत्रों में सीएसआईआर एवं टीआईएसटीआर के बीच एसएंडटी सहयोग के क्षेत्र को सुदृढ़ और व्यापक बनाने के लिए थाइलैंड इंस्टिट्यूट ऑव साइंटिफिक एंड टेक्नोलॉजिकल रिसर्च के साथ कार्यक्रम पर भी हस्ताक्षर किए हैं।

3.3.7 ईयू परियोजनाओं का प्रबंधन-आईएनएनओ इंडिगो एवं इंडिगो नीति (सं.2013 से नवंबर, 2016 तक)

नए इंडिगो के सकारात्मक परिणा<mark>मों के आधार पर</mark> निधि प्रदान करने के लिए ईसी द्वारा निम्नां<mark>कित दो नई परियोजनाओं</mark> को अनुमोदन प्रदान किया:

- I. भारतीय एवं यूरोपियन शोध के विकास एवं समाकलन हेतु नवोन्मेष आधारित पहल (INNO INDIGO)- सीएसआईआर इस परियोजना का समंवयक है; और
- II. भारतीय और यूरोपियन शोध एवं नवोन्मेष में नीतिगत सहयोग हेतु सहायता (INDIGO. POLICY)-सीएसआईआर इस संघ का सदस्य है।

3.3.7.1 INNO INDIGO, ERANET

इस परियोजना का लक्ष्य नए क्षेत्रों में एसएंडटी सहयोग को बढावा देने के लिए उन्नत शोध एवं निधियन प्रणालियों हेतु संयुक्त अवसंरचना का सृजन करना है। मुख्य विषय "बाजार में विचारों को लाना" यूरोप एवं भारत के नवोन्मेष की मुख्य अवधारणाओं को बनाए रखने के लिए INNO INDIGO तीन प्रकार के नवोन्मेषों पर कार्य करता है यथा (i) प्रतिस्पर्धात्मकता को शक्ति प्रदान करने के लिए व्यापार आधारित नवोन्मेष; (ii) सामाजिक नवोन्मेष जिसमें सामाजिक चुनौतियां एवं आवश्यकताएं सिम्मिलत हैं; और (iii) भारतीय सामाजिक चुनौतियां एवं आवश्यकताएं तथा सहयोग के नए मार्ग प्रशस्त करने पर लिक्षत समावेशी नवोन्मेष

3.3.7.2 INDIGO नीति, BILAT

इस कार्यक्रम की मुख्य विशेषताओं में निम्नवत सम्मिलत हैं: ईयू-इंडिया एसआईटी नीतिगत वार्ता, विशेष रूप से जीएसओ समूहों को सहायता प्रदान करना; एसटीआई सहयोग की वर्तमान स्थिति का विश्लेषण एवं मॉनीटरन उपलब्ध कराना, सूचित निर्णय लेने में सहायता देने के लिए प्रमाण आधारित विश्लेषी आसूचना उपलब्ध कराना; ईयू और भारत के बीच रणनीतिक एसटीआई वार्ता को आगे बढ़ाने एवं अनुपालन के लिए संयुक्त गतिविधियां (प्रायोगिक कार्रवाइयां, विशेषज्ञ कार्यशालाएं, मैच मेकिंग समारोहों) निर्धारित करना; लिक्षत प्रचार गतिविधियों, नेटवर्किंग समारोहों एवं प्रशिक्षणों के माध्यम से परियोजना की पहुंच एवं संवहनीयता सुनिश्चित करना; बाह्य एवं आंतरिक समीक्षाओं तथा ठोस प्रबन्ध के द्वारा उच्च गुणवत्ता वाला क्रियान्वयन सुनिश्चित करना; विभिन्न स्रोतों (ई-यू-एमएस, भारत सरकार, प्रांतों, एसएमई-संघों, एसएफआईसी और जीएसओ) के राजनीतिक निर्णयों को व्यावहारिक एवं मान्य निधियन तंत्रों में बदलना।

2014-15

इस कार्यक्रम के तहत प्रभाग की <mark>मुख्य भूमिकाओं</mark> में अन्य बातों के साथ-साथ निम्नांकित स<mark>म्मिलित हैं: परियो</mark>जना मूल्यांकन; मुख्य रिपोर्टें तैयार करने के लिए डाटा एकत्र करना; और वित्तीय जानकारी देने तथा संघ के भागीदारों के साथ बैठकें आयोजित करना।

बौद्धिक संरक्षण इकाई (आईपीय)

प्रभाग ने भारत में 310 और विदे<mark>श में 448 पे</mark>टेन्ट फाइल करने तथा भारत में 65 और विदेश में <mark>310 पेटेन्ट अधि</mark>ग्रहित करने के लिए हर संभव प्रयास किए हैं।

3.5 विज्ञान प्रसार एकक (यूएसडी)

विज्ञान प्रसार एकक पूर्ण रूपेण सीएसआईआर की अनुकूल सार्वजनिक छवि को बढावा देने के लिए पूरी तरह से जिम्मेवार है। 'टीम यूएसडी' के माध्यम से समग्र उद्देश्य प्राप्त करने के लिए छवि-निर्माण करने वाली अनेक गतिविधियां निष्पादित की गईं।

3.5.1 छवि निर्माण की अनेक गतिविधियों का निष्पादन

प्रिंट मीडिया के माध्यम से छवि निर्माण करना।

3.5.2 प्रचार-प्रसार प्रयास

प्रभावी मीडिया सम्बन्धों ने अपने सम्बन्धित दैनिकों में विज्ञान को सम्मिलित करते हुए प्रैस के महत्वपूर्ण व्यक्तियों से परिणोन्मुखी सम्बन्धों को प्रगाढ़ करने में सहायता की। इस एकक द्वारा उनका विश्वास हासिल करने में उन सबसे उपयुक्त तार्किक सहायता सुनिश्चित की गई; इस एकक द्वारा उपलब्ध कराए गए इंपुट्स की सहायता से अनेक लेख/कहानियां प्रकाशित किए गए।

सीएसआईआर के महत्वपूर्ण स<mark>मारोहों के दौरान</mark> प्रैस कवरेज सफलतापूर्वक आयोजित की ग<mark>ई ।अनेक अवसरों</mark> पर प्रेस प्रकाशनी तैयार की गई और प्रचार किया गया तथा प्रभावकारिता <mark>के लिए इनके क</mark>वरेज का मॉनीटरन किया ।

3.5.3 विज्ञापन प्रयास

प्रभाग सम्पूर्ण भारत के विभिन्न समाचार पत्रों में निम्नांकित विज्ञापन देने के लिए हर संभव प्रयास करता है। जैसे: AcSIR के कार्यक्रमों के अगस्त, 2014 के सत्र में प्रवेश हेतु सूचना; सीएसआईआर पेंशनर वेलफेयर एसोसिएशन का कम्यूनिकेटर-2014; एसीएसआईआर में एसोसिएट निदेशक के पदों की भर्ती हेतु; 72वां सीएसआईआर स्थापना दिवस, 2014; एसीएसआईआर में निदेशक के पदों हेतु भर्ती; एसीएसआईआर के जनवरी, 2015 सत्र के पीएच.डी. कार्यक्रम; विज्ञापन एजेंसियों का नामिकायन करना; ग्रामीण विकास हेतु एसएंडटी नवोन्मेष के लिए सीएसआईआर एसएंडटी नवोन्मेष पुरस्कार; सीएसआईआर-आईआईसीबी, सीएसआईआर-आईएचबीटी, सीएसआईआर-आईआईटीआर, सीएसआईआर-एनपीएल, सीएसआईआर-एसईआरसी, सीएसआईआर-आईआईसीटी एवं सीएसआईआर-एनआईआईएसटी के निदेशकों के पदों के लिए चयन; सीएसआईआर पेंशनर्स वेलफेयर एसोसिएशन का न्यूज लैटर, 2014 हेतु न्यूज लैटर सं.22, सीएसआईआर-एनएमआईटीएलआई योजना के अंतर्गत उद्योग जनित परियोजना (आईपीओएस); 24 मार्च, 2015 को विश्व क्षय रोग दिवस; और 7-9 जनवरी, 2015 के दौरान गुजरात में 13वां प्रवासी भारतीय दिवस।

सीएसआईआर दो मुख्य उद्देश्यों <mark>के साथ</mark> विभिन्न राष्ट्रीय/अंतर्राष्ट्रीय प्रदर्शनियों और अन्य <mark>संबंधित समारो</mark>हों में भाग लेता है: (i) सीएसआईआर और इसकी उपलब्धियों के बारे में जागरू<mark>कता सृजित कर</mark>ना, और (ii) इसके व्यापार विकास प्रया<mark>सों को समर्थन दे</mark>ना।

इस महत्वपूर्ण गतिविधि को समे<mark>कित किया गया</mark> और एक ओर सीएसआईआर की भागीदार प्रयोग<mark>शालाओं तथा दूसरी ओर कार्यक्रम के आयोजकों के साथ गहन समन्वयन के माध्यम से प्रत्येक कार्यक्रम के थीम एरिया के लिए सीएसआईआर के समग्र योगदान की यथा संभव सर्वतोन्मुखी तस्वीर प्रस्तुत करने के प्रयास किए गए।</mark>

2014-15

3.5.5 एकक द्वारा आयोजित अन्य समारोह

सीएसआईआर ने निम्नांकित में भाग लिया: 12-13 जुलाई, 2014 के दौरान 12वां इंफ्रा इड्यूके, जम्मू (जम्मू एवं कश्मीर) तथा नई दिल्ली में 22-22 जून, 2014 के दौरान; 25-27 जुलाई, 2014 के दौरान 10वां सरकारी उपलब्धियां एवं योजना एक्सपो-2014, नई दिल्ली; 22-24 अगस्त, 2014 में एग्रीटेक इंडिया-2014, बेंगलूरु; 18-20 सितम्बर, 2014 में तीसरा विज्ञान एक्सपो-2014, सोलन (हि.प्र.); 17-19 अक्तूबर, 2014 के दौरान वाइब्रेंट इंडिया-2014 एवं 9वां मेरी दिल्ली उत्सव, नई दिल्ली; 12-13 नवंबर, 2014 के दौरान वैश्विक अनुसंधान एवं विकास शीर्ष बैठक-2014, नई दिल्ली; इंडो एक्सपो सेंटर, ग्रेटर नौएडा में 18-22 नवम्बर, 2014 में इंडिया-यूएस टेक्नोलॉजी एंड नोलेज एक्सपो-2014; 4-6 दिसम्बर, 2014 में इंटरनेशनल कॉन्फ्रेंस एंड एग्जीविशन ऑन मैटिरियल्स इंजीनियरिंग टेक्नोलॉजी + हीट ट्रीटमेंट-एमईटी + एनटीएस 2014, गुजरात; 4-7 दिसम्बर, 2014 में 6वां एग्रोविजन, नागपुर; 15-17 दिसम्बर, 2014 में आविष्कार एक्सपो 2014, कांगड़ा (हि.प्र.); 3-7 जनवरी, 2015 में 102वां इंडियन सांइस कॉग्रेस, मुम्बई; 28-31 जनवरी, 2015 के दौरान केमटेक + फार्मा वर्ल्ड एक्स्पो-2015, मुम्बई; 29-31 जनवरी, 2015 के दौरान केमटेक + फार्मा वर्ल्ड एक्स्पो-2015, मुम्बई; 29-31 जनवरी, 2015 के दौरान स्वदेशी मेला-2015, काशी।

3.5.6 अन्य सूचना प्रसार सेवा<mark>ए</mark>ं

यह एकक नियमित आधार पर लगभग 25 शोध पत्रों एवं 14 पत्रिकाओं की स्केनिंग करने के बाद विज्ञान एवं प्रौद्योगिकी मंत्री के कार्यालय, महानिदेशक, सीएसआईआर एवं सीएसआईआर के अन्य शीर्ष प्रबन्धन को प्रैस क्लिपिंग सेवा उपलब्ध कराता है। यह गतिविधि इसे अधिक व्यावसायिक एवं समयबद्ध बनाने के लिए समेकित की गई थी।

3.5.7 एकक की नियमित समाचार पत्र क्लिपिंग सेवा का महत्व बढ़ाना

- एमओएस (एसएंडटी), डीजी, सीएसआईआर एवं अन्य संबंधित विभागों के अवलोकनार्थ सीएसआईआर के महत्वपूर्ण समारोहों (राष्ट्रीय और अन्तर्राष्ट्रीय दोनों) के मीडिया द्वारा कवरेज का विशेष संग्रह प्रारंभ किया गया; और
- महानिदेशक, सीएसआईआर के अवलोकनार्थ राष्ट्रीय एवं अंतर्राष्ट्रीय ऑन-लाइन स्रोतों में दी गई जानकारी के अनुसार विज्ञान एवं प्रौद्योगिकी
 और सीएसआईआर के हित वाले अन्य क्षेत्रों में नवीनतम विकास को सिम्मिलित करने के लिए विशेष परिशिष्ट भी प्रकाशित किए गए।

3.5.8 तकनीकी सेवाएं

सीएसआईआर की गतिविधियों से संबंधित सूचना के अनेक प्रश्नों का या तो व्यक्तिगत तौर पर अथवा डाक/ई-मेल द्वारा प्रयोक्ताओं की अत्यधिक संतुष्टि के लिए उत्तर दिए।

3.5.9 सूचना का अधि<mark>कार अधिनियम, 200</mark>5 के अंतर्गत जन सूचना अधिकार<mark>ी का कार्यालय</mark>

भारत सरकार का सूचना का अधिकार अधिनियम लागू हो गया है, प्रधान, यूएसडी को महानिदेशक, सीएसआईआर द्वारा जन सूचना अधिकारी, सीएसआईआर के रूप में नियुक्त किया गया है। इस अधिनियम के तहत (सीएसआईआर विषयक) सूचना हेतु सभी अनुरोधों पर इस एकक द्वारा कार्रवाई की जाती है।

3.6 मानव संसाधन विकास केन्द्र (एचआरडीसी)

सीएसआईआर-मानव संसाधन विकास केन्द्र सीएसआईआर के वैज्ञानिकों, प्रौद्योगिकीविदों, प्रशासन एवं सहायक स्टाफ के कौशलों एवं क्षमताओं का संवर्धन करने के लिए प्रशिक्षण कार्यक्रमों के आयोजन द्वारा सीएसआईआर की मानव संसाधन विकास की आवश्यकताओं को पूरा करने में महत्वपूर्ण योगदान दे रहा है। इस वर्ष के दौरान केन्द्र ने सीएसआईआर स्टाफ की विभिन्न श्रेणियों के लिए अलग-अलग विषयों पर कुल 37 प्रशिक्षण कार्यक्रम आयोजित किए। इस केन्द्र द्वारा प्रारंभ की गई प्रशिक्षण एवं विकास गतिविधियों की झलक नीचे प्रस्तुत की गई है:

2014-15

3.6.1 नेतृत्व क्षमता निर्माण कार्यक्रम

नेतृत्व विकास प्रतिस्पर्धा लाभ एवं निष्पादन के लिए सतत प्रक्रिया है। केन्द्र ने सीएसआईआर में नेतृत्व पाइपलाइन का विकास करने में अपने प्रयासों को जारी रखा। केन्द्र ने नेतृत्व क्षमता <mark>का विकास करने</mark> के लिए आवश्यक दृष्टि कोणों, ज्ञान, कौशलों एवं रणनीतियों से उन्हें सज्जित करने के लिए वरिष्ठ वैज्ञानिकों एवं अधिकारियों हेतु सीएसआईआर में अग्रणी नेतृत्व विकास कार्यक्रमों की श्रृंखला प्रारंभ की। इस वर्ष के दौरान एक मूल नेतृत्व विकास कार्यक्रम तथा तीन अग्रणी नेतृत्व विकास कार्यक्रम आयोजित किए गए। इन कार्यक्रमों की सभी ने भूरि-भूरि प्रशंसा की।

3.6.2 मुख्य प्रशिक्षण एवं विकास कार्यक्रम

वैज्ञानिकों एवं तकनीकी कार्मिकों की प्रतिस्पर्धा क्षमता विकसित करने के लिए अन्य मुख्य प्रशिक्षण कार्यक्रम आयोजित किए जिनमें निम्नांकित सम्मिलित हैं 'प्रभावी एसएंडटी सूचना तैयार करने विषयक प्रशिक्षण कार्यक्रम', 'महिला वैज्ञानिकों एवं अधिकारियों हेतु कामकाजी जीवन संतुलन विषयक कार्यक्रम' 'तकनीकी अधिकारियों हेतु प्रबंधन क्षमता का विकास', 'वैज्ञानिकों हेतु प्रेरणा प्रशिक्षण कार्यक्रम' और 'तकनीकी कार्मिकों हेतु उन्मुखी प्रशिक्षण कार्यक्रम'। केन्द्र ने सीएसआईआर विज्ञान प्रसार एकक (यूएसडी) के सहयोग से सीएसआईआर की प्रयोगशालाओं में विज्ञान पत्रकारों के लिए तीन दिवसीय 'विज्ञान प्रसार एवं ब्रांड निर्माण' पर कार्यशाला आयोजित की।

इसके अतिरिक्त केन्द्र ने प्रशासन, वित्त और भण्डार एवं क्रय संवर्गों के लिए विभिन्न क्षमता निर्माण एवं पुनश्चर्या कार्यक्रम भी आयोजित किए जिनमें पदार्थ प्रबंधन में उभरते स्वरूपों, 'अपील प्राधिकारियों और जन सूचना अधिकारियों हेतु आरटीआई अधिनियम का प्रभावी क्रियान्वयन' पर प्रशिक्षण कार्यक्रम 'राजभाषा नीति के कार्यान्वयन की अनिवार्यता एवं व्यावहारिकता' पर प्रशिक्षण कार्यक्रम सीएएसई-2013 के तहत भर्ती हुए सहायकों हेतु 'प्रेरण प्रशिक्षण कार्यक्रम' आदि सम्मिलित हैं।

केन्द्र ने सीएसआईआर की विभिन्न प्रयोगशालाओं, में सहायकों हेतु ऑफ कैम्पस कौशल विकास कार्यक्रम की श्रृंखलाएं जारी रखीं। सभी संवर्गों के सहायकों हेतु तेरह प्रशिक्षण कार्यक्रम आयोजित किए गए जिनका फोकस अपने कार्यों को प्रभावी रूप से निष्पादित करने में उन्हें समर्थ बनाने के लिए कार्यात्मक ज्ञान एवं कौशलों का उन्नयन करने पर था।

केन्द्र ने वित्त, प्रशासन एवं इंजीनियरी सेवा एककों के अधिकारियों हेतु 'कार्य एवं सेवाओं में निवारक सतर्कता' पर विशिष्ट रूप से निर्मित प्रशिक्षण कार्यक्रमों की श्रृंखला भी प्रारंभ की। यह कार्यक्रम ठेका प्रबंधन सहित कार्यों एवं सेवाओं के सभी सतर्कता एवं वित्त संबंधित पहलूओं को सिम्मिलित करने के लिए विशेष रूप से तैयार किया गया था। इस वर्ष के दौरान क्षेत्रीय आधार पर सीएसआईआर की विभिन्न प्रयोगशालाओं में चार कार्यक्रम आयोजित किए गए। इन कार्यक्रमों को भागीदारों द्वारा स्वीकार किया गया।

3.6.3 एसीएसआईआर को प्रशिक्षण सहायता

एसीएसआईआर के लिए अनुसं<mark>धानोन्मुखी विषयक नौ</mark> दिवसीय विस्तृत प्रशिक्षण कार्यक्रम आयोजित किया गया । यह कार्यक्रम एसीएसआईआर <mark>के</mark> इंजीनियरिंग कार्यक्रम में समेकित एम.टेक-पीएच.डी. के अभ्यर्थियों हेतु विकसित एवं आयोजित किया गया था ।

3.7 भर्ती एवं मूल्यांकन बोर्ड (आरएबी)

3.7.1 वैज्ञानिकों की भर्ती

आरएबी ने सीएसआईआर की <mark>प्रयोगशालाओं में 116</mark> वैज्ञानिकों की भर्ती की।

3.7.2 वैज्ञानिकों <mark>का मूल्यांकन</mark>

चूंकि आरएबी रिपोर्ट अवधि के <mark>मुख्य भाग में अपने</mark> अध्यक्ष की प्रतीक्षा में रहा और मुख्य मुद्धा (स्क्रीनिंग <mark>हेतु</mark> प्रवेशांकों) को जीबी के स्तर पर सुलझाया जाना अपेक्षित था । इसलिए इस <mark>वर्ष वैज्ञानिकों के मूल्या</mark>ंकन सम्बन्धी कार्रवाई नहीं की जा सकी ।

2014-15

प्रभाग ने केन्द्रीय सिल्क बोर्ड, वस्त्र मंत्रालय, बेंगलूरु हेतु वैज्ञानिकों के 16 पदों की भर्ती का मुख्य भाग प्रारंभ करने के लिए रु.1.6 मिलियन मूल्य की परामर्शी परियोजना प्रारंभ की।

आईएस/आईएसओ 90001:2008 <mark>क्यूएम</mark>एस अनुपालन के लिए सीएसआईआर-आरएबी के अनुपा<mark>लन का</mark> सत्यापन करने के लिए आंतरिक लेखा परीक्षा और उचित प्रबंधन समीक्षाएं 16 <mark>अप्रैल, 25 जुला</mark>ई एवं 5 नवंबर, 2014 को प्रारंभ की गईं।

परंपरागत ज्ञान डिजिटल लाइब्रेरी (टीकेडीएल)

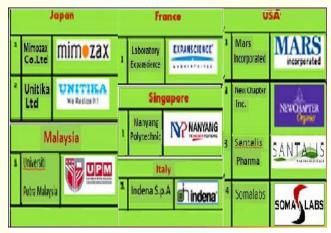
परंपरागत ज्ञान के दुरुपयोग एवं आनुवंशिकी संसाधनों की जैव-चौर्य सभी विकासशील राष्ट्रों के लिए अत्यधिक चिंता के विषय हैं और इन विषयों को अनेक बहुपक्षीय मंचों यथा जैविक विविधता विषयक सभा, ट्रिप्स परिषद, विश्व व्यापार संगठन और विश्व बौद्धिक संपदा संगठन पर जारी रखे गए हैं। परंपरागत ज्ञान डिजिटल लाइब्रेरी (टीकेडीएल) का अंतर्राष्ट्रीय पेटेंट कार्यालयों (आईपीओएस) में भारत के परंपरागत ज्ञान के दुरुपयोग को रोकने के लिए सृजन किया गया है। इसीलिए 'हल्दी' एवं नीम के दुरुपयोग को रोका जा सका। अंतर्राष्ट्रीय पेटेंट कार्यालयों में भारत के परंपरागत ज्ञान के दुरुपयोग का यह कारण था कि चूंकि ऐसा परंपरागत औषधीय ज्ञान स्थानीय भाषाओं में मौजूद था और ये न पेटेंट परीक्षकों को उपलब्ध था अथवा यदि इसकी उपलब्धता थी तो वह उनके लिए अबोधगम्य थी। अन्य शब्दों में मौजूदा भाषा एवं फॉर्मेट सीमाओं के कारण पेटेंटों को मौजूदा ज्ञान पर लिया जा रहा है। टीकेडीएल ने भाषा और फॉर्मेट संबंधी सीमाओं को समाप्त किया है।

3.8.1 औषधीय सूत्रणों <mark>का संरक्षण</mark>

मार्च, 2015 तक टीकेडीएल के माध्यम से भारत ने नीम एवं हल्दी के समान लगभग 0.29 मिलियन औषधीय सूत्रणों की सुरक्षा की है। वर्ष के दौरान आयुर्वेद, यूनानी एवं सिद्ध के 19, 569 औषधीय सूत्रणों की टीकेडीएल में पहचान की गई है जो दुरूपयोग से इन सूत्रणों को संरक्षण प्रदान करेगा। यह ध्यान देना उचित है कि जुलाई, 2009 से मार्च, 2015 तक भारत अंतर्राष्ट्रीय पेटेंट कार्यालयों में बिना किसी लागत एवं कुछ सप्ताह के समय में 215 मामलों में भारत के परंपरागत ज्ञान के दुरूपयोग को रोक सका है, जबिक एपीईडीए को सात करोड़ से अधिक की लागत वाले बासमती पर स्वीकृत गलत पेटेंट में कुछ दावे निरस्त हुए हैं।

3.8.2 पेटेंटों की गलत स्वीकृति रोकना

वर्ष के दौरान टीकेडीएल एकक ने भारत के परंपरागत ज्ञान संबंधी 352 पेटेंट आवेदनों की पहचान की है और 289 पूर्व-स्वीकृति विरोध फाइल किए हैं तथा लगभग 39 मामलों में भारत के परंपरागत ज्ञान पर बिना किसी लागत के गलत पेटेंटों की स्वीकृति को रोकने में सफल रहा, टीकेडीएल के प्राइअर-आर्ट प्रमाणों सिहत टीकेडीएल द्वारा फाइल किए गए स्वीकृति-पूर्व विरोध के कारण इसमें यूनाइटिड स्टेट्स, ग्रेट ब्रिटेन, स्पेन, इटली, चीन आदि की फार्मास्यूटिकल कंपनियों के आवेदनों को आवेदकों द्वारा वापस लिया गया है। परीक्षकों द्वारा दावों को निरस्त किया गया है। आवेदकों द्वारा दावों में संशोधन किया गया है। अभी परीक्षाधीन शेष मामलों में समान परिणामों की आशा है।


चित्र: 3.2

2014-15

चित्र: 3.3

चित्र: 3.4

3.8.3 विदेशी पेटेंट कार्यालयों के साथ टीकेडीएल पहुंच करार

मई, 2014 में भारत ने अन्य सात अन्तर्राष्ट्रीय पेटेंट कार्यालयों यथा यूरोपीयन पेटेंट कार्यालय (ईपीओ), यूनाइटिड स्टेट पेटेंट और ट्रेडमार्क कार्यालय (यूएसपीटीओ), यूनाइटिड िंगडम पेटेंट और ट्रेडमार्क कार्यालय (यूकेपीटीओ), कनाडा बौद्धिक सम्पदा कार्यालय (सीआईपीओ), जर्मन पेटेंट कार्यालय (जीपीओ), ऑस्ट्रेलिया बौद्धिक सम्पदा कार्यालय (एआईपीओ) और जापान पेटेंट कार्यालय (जीपीओ) के साथ पूर्व में हस्ताक्षरित के समान चिली के बौद्धिक सम्पदा कार्यालय द नेशनल इंस्टिट्यूट ऑव इंटेलेक्चुअल प्रॉपर्टी (आईएनएपीआई) के साथ टीकेडीएल पहुंच करार पर हस्ताक्षर किए हैं जो आगे भारत के परंपरागत ज्ञान पर पेटेंटों की गलत स्वीकृति को रोकेगा तथा रूस पेटेंट कार्यालय और मलेशिया बौद्धिक संपदा कार्यालय के साथ टीकेडीएल पहुंच करार सम्पन्न करने संबंधी बातचीत अग्रिम स्तर पर हैं।

3.8.4 टीकेडीएल प्रयासों को मान्यता

टीकेडीएल की सफलताओं को अंतर्राष्ट्रीय और राष्ट्रीय दोनों स्तरों पर अत्यधिक मान्यता प्रदान की गई है, चूंकि टीकेडीएल भारत के लाभ के लिए अंतर्राष्ट्रीय पेटेंट प्रणाली की चुनौती में समर्थ रहा है, तथापि अंतर्राष्ट्रीय बौद्धिक संपदा प्रणाली के नियम एवं प्रक्रियाओं का प्रबंधन एवं नियंत्रण विकसित राष्ट्रों यथा यूनाइटिड स्टेट्स, यूरोपीयन यूनियन, जापान आदि द्वारा किया जाता है। इसके अतिरिक्त पेटेंटों के आवेदक श्रेष्ठ विधि सुविधाओं तक पहुंच वाले साधन संपन्न बहु राष्ट्रीय निगम होते हैं। जबिक टीकेडीएल के पास अपने पक्ष पर सच्चाई एवं संस्थागत तंत्र है जो कुछ अंतर्राष्ट्रीय पेटेंट कार्यालयों के साथ टीकेडीएल के पहुंच करार पर स्थापित किया गया है।

2014-15

चित्र: 3.5

विश्व बौद्धिक संगठन (डब्ल्यूआईपीओ), जेनेवा का अन्य राष्ट्रों, विशेष रूप से विकासशील राष्ट्रों के परंपरागत ज्ञान के संरक्षण हेतु टीकेडीएल का अंतर्राष्ट्रीयकरण करने का प्रस्ताव है। कुछ देश प्रथमतया टीकेडीएल की प्रतिकृति प्राप्त करने (मुख्यतया विकासशील राष्ट्र) और परंपरागत ज्ञान पर पेटेंट फाइल आवेदनों की जांच की गुणवत्ता में सुधार लाने के लिए टीकेडीएल से पहुंच बनाने के लिए सम्पर्क कर रहे हैं, इसमें विकसित राष्ट्र भी सम्मिलित हैं। इसके अतिरिक्त डब्ल्यूआईपीओ टीकेडीएल को पीसीटी न्यूनतम प्रलेखन में सम्मिलित करना चाहता है जो परंपरागत ज्ञान के क्षेत्र में फाइल किए पेटेंट आवेदनों की जांच करते समय सभी अंतर्राष्ट्रीय शोध प्राधिकारियों को भारत के टीकेडीएल का संदर्भ लेने के लिए अनिवार्य बनाएगा।

सीएसआईआर के टीकेडीएल प्रयास का महत्वपूर्ण परिणाम है कि फरवरी, 2015 के दौरान जापान पेटेंट कार्यालय, टोकियों में आयोजित पेटेंट सहयोग सिन्ध (पीसीटी/एमआईए) के अंतर्गत अंतर्राष्ट्रीय प्राधिकारियों की बैठक के बाइसवें सत्र में ''पीसीटी न्यूनतम प्रलेखन में टीकेडीएल का समावेशन'' मुख्य कार्य सूची मद था।

2014-15

तारीखवार सीएसआईआर

तारीख	मुख्य विवरण
अप्रैल, 2014	
24	सीएसआईआर-सीडीआरआई: संस्थान ने लैबोरेटरी एनिमल साइंस एसोसिएशन ऑव इंडिया (एलएएसएआई) के सहयोग से वर्ल्ड लैबोरेटरी एनिमल डे मनाया।
मई, 2014	
13	राष्ट्रीय प्रौद्योगिकी दिवस-2014: सीएसआईआर की संपूर्ण प्रयोगशालाओं एवं संस्थानों ने मनाया जिसमें विभिन्न व्याख्यान और कार्यशालाओं का आयोजन किया गया।
22-24	सीएसआईआर-एनआईएससीएआईआर: चौथा वार्षिक अफ्रीकी एकता पुनर्जागरण सम्मेलन टीश्वाने, दक्षिण अफ्रीका में
	आयोजित किया गया। दक्षिण अफ्रीका के पूर्व राष्ट्रपति, थाबो मबेकी ने उद्घाटन सत्र को संबोधित किया तथा वैज्ञानिक सोच के भारतीय संदेश की सराहाना की।
26-31	सीएसआईआर-सीआईएमएपी: सगंध तेल संसाधन प्रौद्योगिकी पर 5 दिवसीय उद्यमशीलता प्रशिक्षण आयोजित किया गया ।
जून, 2014	
5	सीएसआईआर की प्रयोगशालाओं/संस्थानों द्वारा विश्व पर्यावरण दिवस मनाया गया।
5-6	सीएसआईआर-सीजीसीआरआई: नीयर नेट शेप मैन्यूफेक्चरिंग ऑव प्रीसीजन इंजीनियरिंग कम्पोनेट की दो दिवसीय अंतरराष्ट्रीय कार्यशाला आयोजित की गई।
24	सीएसआईआर-सीडीआरआई: सीएसआईआर-सीडीआरआई के प्रथम भारतीय निदेशक एवं देश के उत्कृष्ट भेषज विज्ञानी की
	स्मृति में सचिन एंड सिक्ता प्रधान फाउंडेशन, बेथेस्डा, यूएसए द्वारा प्रायोजित 13वां डॉ. बी. मुकर्जी स्मारक व्याख्यान
	आयोजित किया गया। पदम भूषण प्रो. जी पद्मनाबन ने ''मलेरिया में मूल जीवविज्ञान से संभावित चिकित्सीय नमूनों तक'' पर व्याख्यान दिया।
28	सीएसआईआर-एनईईआरआई: डॉ. जितेन्द्र सिंह, माननीय राज्य मंत्री (स्वतंत्र प्रभार) केन्द्रीय विज्ञान एवं प्रौद्योगिकी तथा पृथ्वी विज्ञान ने संस्थान का दौरा किया।
जुलाई, 2014	
12	सीएसआईआर-एनआईओ: डॉ. जितेन्द्र सिंह, उपाध्यक्ष-सीएसआईआर तथा विज्ञान एवं प्रौद्योगिकी तथा पृथ्वी विज्ञान राज्य
	मंत्री (स्वतंत्र प्रभार) ने सिन्धु साधना — नया अनुसंधान पोत राष्ट्र को समर्पित किया।
अगस्त, 2014	
5-6	सीएसआईआर-सीएफटीआरआई: संस्थान द्वारा खाद्य विज्ञान एवं प्रौद्योगिकी के क्षेत्र में संयुक्त अनुसंधान एवं विकास प्रस्तावों को तैयार करने विषयक दो दिवसीय डीएसटी पणधारी शिखर सम्मेलन आयोजित किया गया।
6-7	सीएसआईआर-एनईईआरआई: 'वायु प्रदूषण प्रेरित स्वास्थ्य प्रभाव, स्वास्थ्य जोखिम मूल्यांकन सोफ्टवेयर विकास एवं
	प्रदर्शन' पर दो दिवसीय परिसंवाद-सह-कार्यशाला का आयोजन ।
14	सीएसआईआर-सीआईएमएपी: सीएसआईआर टेकविल दाऊ (ब्लॉक पूर्वा), जिला उन्नाव (उ.प्र.) में एक दिवसीय ''स्वास्थ्य
	मेला" आयोजित किया गया। बड़ी संख्या में बच्चों एवं महिलाओं सहित लगभग 500 लोगों ने भाग लिया।
17-19	सीएसआईआर-आईआईआईएम: तीन दिवसीय ''जेएंडके एरोमा समारोह" का डॉ. जितेन्द्र सिंह, केन्द्रीय विज्ञान एवं प्रौद्योगिकी तथा पृथ्वी विज्ञान राज्य मंत्री (स्वतंत्र प्रभार) ने उद्घाटन किया।
26	सीएसआईआर-सीजीसीआरआई : ''केमिकलसाइंस इन शेपिंग फंक्शनल मेटेरियल्स एण्ड टेक्नोलॉजीज़ ऑव द फ्यूचर'' विषय
	पर निदेशक, सीएसआईआर-एनसीएल, पुणे द्वारा 11वां आत्माराम स्मारक (एआरएम) व्याख्यान दिया गया।
सितम्बर, 2014	, , , , , , , , , , , , , , , , , , , ,
24	सीएसआईआर-सीडीआरआई ''मेंस एण्ड एनएमआर टेकनीक्स इन ड्रग रिसर्च'' पर एक दिवसीय संगोष्ठी का आयोजन किया गया। विभिन्न विश्वविद्यालयों/संस्थानों के 50 से अधिक भागीदारों ने इस संगोष्ठी में भाग लिया।
20-25	सीएसआईआर-सीआईएमएफआर: भारत में पहली बार 'कोयला एवं कार्बनिक पेट्रोलॉजी' हेतु अंतरराष्ट्रीय समिति की 66वीं
_ 3 _ 2	बैठक एवं परिसंवाद का आयोजन किया गया।
26	सीएसआईआर की प्रयोगशालाओं/संस्थानों द्वारा 72वां सीएसआईआर स्थापना दिवस मनाया गया।

अक्तूबर, 2014	
16-18	सीएसआईआर-सीडीआरआई: ''परजीवी रोगों के प्रबंधन में वैश्विक चुनौतियों'' पर 25वीं राष्ट्रीय पैरोसिटोलॉजी कांग्रेस आयोजित की गई।
17	सीएसआईआर-सीएफटीआरआई: चौथी 'अखिल भारतीय किसान सशक्तीकरण कार्यशाला' आयोजित की गई। संपूर्ण देश के लगभग 120 किसानों ने इस कार्यक्रम में भाग लिया।
20	सीएसआईआर-सीआईएमएपी: औषधीय एवं सगंध पादपों पर आधारित प्रौद्योगिकियों पर एक दिवसीय उद्यमशीलता कार्यशाला आयोजित की गई। लगभग 120 भागीदारों ने इस कार्यशाला में भाग लिया।
नवम्बर, 2014	
5-6	सीएसआईआर-सीआईएमएपी : उत्तर प्रदेश के विंध्या प्रांत हेतु औषधीय एवं सगंध पादपों पर राष्ट्रीय औषधीय पादप बोर्ड (एनएमपीबी) द्वारा प्रायोजित दो दिवसीय प्रशिक्षण-सह-कार्यशाला आयोजित की गई । इस कार्यशाला में लगभग 175 भागीदारों ने भाग लिया ।
10	डॉ. हर्षवर्धन, माननीय मंत्री विज्ञान और प्रौद्योगिकी तथा पृथ्वी विज्ञान एवं उपाध्यक्ष, सीएसआईआर ने कार्यभार ग्रहण किया। श्री वाई.एस. चौदरी ने विज्ञान और प्रौद्योगिकी तथा पृथ्वी विज्ञान राज्य मंत्री का कार्यभार ग्रहण किया।
12-14	सीएसआईआर-सीडीआरआई: वर्ष 2014 संयुक्त राष्ट्र द्वारा 'क्रिस्टेलोग्राफी अंतरराष्ट्रीय वर्ष' घोषित किए जाने के कारण 'इंडियन क्रिस्टेलोग्राफिक एसोसिएशन' (आईसीए) के तत्वावधान में इंडियन क्रिस्टेलोग्राफी पर 43वीं राष्ट्रीय संगोष्ठी (एनएससी43सी) आयोजित की गई । डॉ. गिरीश साहनी, निदेशक, सीएसआईआर-आईएमटीईसीएच ने ''ट्वीकिंग मिकेनिस्टिक इनसाइट्स फ्राम क्रिस्टेलोग्राफी यूजिंग कम्प्लीमेंटेरी एप्रोचेज'' विषय पर उद्घाटन भाषण दिया।
15	सीएसआईआर-एनईआईएसटी: डॉ. हर्ष वर्धन, माननीय मंत्री, विज्ञान और प्रौद्योगिकी तथा पृथ्वी विज्ञान ने संस्थान का दौरा किया।
17	सीएसआईआर-सीआईएमएपी : किसान गोष्ठी आयोजित की जिसमें लगभग 80 किसानों ने भाग लिया।
20	सीएसआईआर-सीएमईआरआई: माननीय मंत्री, विज्ञान एवं प्रौद्योगिकी तथा पृथ्वी विज्ञान एवं उपाध्यक्ष, सीएसआईआर, डॉ. हुई वर्धन ने लघु जोतों वाले भारतीय किसानों को सशक्त बनाने के लिए लघु श्रेणी (11.2hp) डीजल इंजिन ट्रेक्टर, कृषि शक्ति लांच किया। उन्होंने किसानों को पांच ट्रेक्टर भी सौंपे।
24-27	सीएसआईआर-सीआईएमएपी एलोय वेरा प्रक्रमण प्रौद्योगिकी (एवीपीटी) पर उद्यमी प्रशिक्षण आयोजित किया गया जिसमें लगभग 25 प्रशिक्षुओं ने भाग लिया।
दिसम्बर, 2015	
3-4	सीएसआईआर-सीडीआरआई: 'चिकित्सीय परीक्षण एवं प्रतिकूल औषध अनुक्रिया' 'क्लिनरेस्कोन 2014' पर दो दिवसीय राष्ट्रीय परिसंवाद आयोजित किया गया।
4-6	सीएसआईआर-सीजीसीआरआई: नए पदार्थ : अभिलक्षणन एवं अनुप्रयोग: ईएमसीए-2014 पर एनआईटी, दुर्गापुर के सहयोग से अंतरराष्ट्रीय सम्मेलन आयोजित किया गया । प्रो. केन दुरोज, निदेशक, स्टेफेंसन इंस्टिट्यूट फॉर रीन्यूवेबल एनर्जी, लिवरपूल, यूके मुख्य अतिथि थे।
9-10	सीएसआईआर-सीआईएमएपी: अध्यापकों हेतु दो दिवसीय प्रशिक्षण कार्यक्रम आयोजित किया गया । विभिन्न विद्यालयों/कॉलेजों के विज्ञान के इक्कीस अध्यापकों ने भाग लिया ।
10-12	सीएसआईआर-सीडीआरआई: 'औषधियों के प्रति कोशकीय अनुक्रिया' पर XXXVIII अखिल भारतीय कोशिका जीवविज्ञान सम्मेलन एवं अंतरराष्ट्रीय परिसंवाद आयोजित किया गया।
	सीएसआईआर-आईआईसीबी: ऑल इंडिया कांग्रेस ऑव साइटो <mark>लॉजी एंड जेनेटिक्</mark> स (एआईसीसीजी) के सहयोग से पर्यावरण म्यूटेजेंस पर चौथा एशियन सम्मेलन। 150 भारतीय प्रतिनिधि एवं <mark>छात्रों सहित चीन</mark> , कोरिया, जापान, ऑस्ट्रिया, जर्मनी, यूएसए, ईरान, कजाकिस्तान, ऑस्ट्रेलिया, कनाडा एवं बेल्जियम के सत्तर अंतरराष्ट्रीय प्रतिनिधियों ने भाग लिया।
13-15	सीएसआईआर-आईआईसीबी: 'एडवांस्ड स्टडीज ऑन सेल सिग्ने <mark>लिंग नेटवर्क' (CeSiN-</mark> 2014) पर दूसरा अंतरराष्ट्रीय <mark>परिसंवाद आयो</mark> जित किया गया। भारत एवं विदेश से लगभग 170 भागीदारों ने भाग लिया।
जनवरी, 2015	
1	सीएसआईआर-सीडीआरआई: पद्मश्री डॉ. नित्या आनंद की 90वीं जयंती पर 'भारत में औषध खोज : भूत, वर्तमान एवं भविष्य' पर एक दिवसीय परिसंवाद आयोजित किया गया।
	सीएसआईआर-एनआईओ : डॉ. हर्ष वर्धन, मंत्री, विज्ञान एवं प्रौद्योगिकी तथा पृथ्वी विज्ञान ने संस्थान का दौरा किया एवं संस्थान के स्वर्ण जयंती वर्ष समारोह का उद्घाटन भाषण दिया।

17	सीएसआईआर-एसईआरसी: श्री वाई.एस. चौदरी, माननीय राज्यमंत्री, विज्ञान और प्रौद्योगिकी तथा पृथ्वी विज्ञान ने प्रयोगशाला
	का दौरा किया एवं $ASTaR$ एवं विंड इंजीनियरिंग लेब में गतिविधियों एवं सुविधाओं की झलक देखी।
19	सीएसआईआर-सीईसीआरआई: संस्थान द्वारा नोबल दिवस 2014 मनाया गया ।
31	सीएसआईआर-सीआईएमएपी: किसान मेले का आयोजन किया गया जिसमें देश के विभिन्न भागों से 4000 किसानों एवं उद्यमियों
	ने भाग लिया। माननीय राज्यपाल, उत्तर प्रदेश, श्री राम नाईक मुख्य अतिथि थे।
फरवरी, 2015	
5-7	सीएसआईआर-एनईईआरआई: "मॉलिकुलर इम्प्रिंटिंग : स्ट्रेटेजीज़, एप्लीकेशंस एण्ड फ्यूचर पर्सपेक्टिव्स" पर तीन दिवसीय इंडो-यूके संगोष्ठी आयोजित की गई।
9	सीएसआईआर-एनबीआरआई: 'ग्लेडिओलस' की नई किस्म जारी की गई।
18	सीएसआईआर-एनएएल : येलाहांका एयर फोर्स बेस में '10वें अंतरराष्ट्रीय एयरोइंडिया 2015' में भाग लिया। भारत के माननीय प्रधानमंत्री श्री नरेन्द्र मोदी ने इस विशाल समारोह का उद्घाटान किया। एयरो इंडिया 2015 ने 328 प्रदर्शकों के द्वारा 49 राष्ट्रों एवं 295 भारतीय प्रदर्शकों की भागीदारी से विगत के सभी रिकॉर्डों को मात दी है।
22	सीएसआईआर-एनबीआरआई एवं सीएसआईआर-सीआईएमएपी: भारत के उपराष्ट्रपति श्री एम. हामिद अंसारी ने संस्थान का दौरा किया एवं 'मधुमेह के प्रबंधन हेतु हर्बल सूत्रण' जारी किया।
25-27	सीएसआईआर-सीएमईआरआई: 'मीट्रोलॉजी में प्रगति (AdMet2015)' पर चौथा राष्ट्रीय सम्मेलन आयोजित किया गया।
28	सीएसआईआर की प्रयोगशालाओं/संस्थानों ने राष्ट्रीय विज्ञान दिवस मनाया।
मार्च, 2015	
6	सीएसआईआर की प्रयोगशालाओं/संस्थानों ने अंतरराष्ट्रीय महिला दिवस मनाया।
13-14	सीएसआईआर-सीडीआरआई: ''शोध एवं परीक्षण में पशु : प्रासंगिकता एवं आचार नीति में मिश्रित वार्ता'' (एनएसएआरटी 2015) पर लैबोरेटरी एनिमल साइंस एसोसिएशन ऑव इंडिया (एलएएसएआई) के सहयोग से दो दिवसीय राष्ट्रीय परिसंवाद आयोजित किया गया।
23	सीएसआईआर-सीएलआरआई एवं सीएसआईआर-एसईआरसी: डॉ. हर्ष वर्धन, माननीय मंत्री, विज्ञान और प्रौद्योगिकी तथा पृथ्वी विज्ञान मंत्री एवं उपाध्यक्ष, सीएसआईआर ने संस्थान का दौरा किया।
27	सीएसआईआर-एनपीएल: डॉ. हर्ष वर्धन, माननीय मंत्री, विज्ञान और प्रौद्योगिकी तथा पृथ्वी विज्ञान ने प्रयोगशाला का दौरा किया।

2014-15

संलग्नक -।

पुरस्कार/मान्यता 2014-2015

सी<mark>एसआईआर</mark> स्टाफ को वर्ष के दौरान निम्नांकित अनेक पुरस्कार एवं मान्यताएं प्राप्त हुई हैं:

पुरस्कार/मान्यता		प्रयोगशाला का नाम
इंफोसिस फाउंडेशन पुरस्कार-2013	डॉ. एस शेखरचन्द्र .	सीएसआईआर-आईआईसीटी
विश्व विज्ञान अकादमी के चुने हुए फैलो (टीडब्ल्यूएएस)	प्रो. समीर के ब्रह्मचारी .	पूर्व-महानिदेशक, सीएसआईआर
	डॉ. हेमन्त केमजुमदार .	सीएसआईआर-आईआईसीबी
शान्ति स्वरूप भटनागर पुरस्कार-2014	डॉ. एस. वेंकट मोहन	सीएसआईआर-आईआईसीटी
<u> </u>	डॉ. अनुराग अग्रवाल	सीएसआईआर-आईजीआईबी
	डॉ. सौविक माइती	सीएसआईआर-आईजीआईबी
भारतीय विज्ञान अकादमी के फैलोज -2015	डॉ. जावेद एन. अग्रेवाला	सीएसआईआर-आईएमटीईसीएच
	डॉ. ए अनिल .सी.	सीएसआईआर-एनआईओ
	डॉ. शान्तनु चौधरी	सीएसआईआर-आईजीआईबी
	डॉ. अनुराधा दूबे	सीएसआईआर-सीडीआरआई
	डॉ. बीप्रसाद .वी.एल.	सीएसआईआर-एनसीएल
	डॉसरमा .एस.एस.वी.वी .	सीएसआईआर-एनआईओ
	डॉ. के. थंगराज	सीएसआईआर-सीसीएमबी
भारतीय राष्ट्रीय विज्ञान अकादमी 2015-के फैलो	डॉ. नाहिद अली	सीएसआईआर-आईआईसीबी
	डॉ. एस शेखरचन्द्र .	सीएसआईआर-आईआईसीटी
	डॉ. के प्तागु .सी.	सीएसआईआर-आईआईटीआर
	डॉ. भावनाथ झा	सीएसआईआर-सीएसएमसीआरआई
	डॉ. प्रदीप कुमार	सीएसआईआर-एनसीएल
	डॉ. आरमिश्रा .के.	सीएसआईआर-सीसीएमबी
	डॉ. गिरीश साहनी	सीएसआईआर-आईएमटीईसीएच
	डॉ. ए त्रिपाठी .के.	सीएसआईआर-सीआईएमएपी
राष्ट्रीय विज्ञान अकादमी के फैलोज, इलाहबाद 2014 –	डॉ. जगदीश भारतम	सीएसआईआर-आईआईसीटी
	डॉ. शर्मिला चट्टोपाध्याय	सीएसआईआर-आईआईसीबी
	डॉ. केया चौधरी	सीएसआईआर-आईआईसीबी
	डॉ. ओ.पी. पांडे	सीएसआईआर-एनजीआरआई
	डॉ. सिब शंकर रॉय	सीएसआईआर-आईआईसीबी
	डॉ. ए सिन्हा .के.	सीएसआईआर-सीडीआरआई
	डॉ. पी त्रिवेदी .के.	सीएसआईआर-एनबीआरआई
भारतीय राष्ट्रीय इंजीनियरी अकादमी के फैलोज 2014 –	डॉ. एस.के. बिस्वास	सीएसआईआर-आईएमएमटी
* :	डॉ. सी.वी. रोड़े	सीएसआईआर-एनसीएल
	डॉ. एस. वेंकट मोहन	सीएसआईआर-आईआईसीटी
नैनो मिशन डीएसटी से नैनो विज्ञान एवं प्रौद्योगिकी में राष्ट्रीय अनुसंधान पुरस्कार – 2014	डॉ. गौतम डे	सीएसआईआर-सीजीसीआरआई

सीएसआईआर प्रौद्योगिकी पुरस्कार – 2014		
इंजीनियरी सहित भौतिक विज्ञान	टीम-सीएसआईआरआईआईसीटी-	सीएसआईआर-आईआईसीटी
नवोन्मेषी	टीम-सीएसआईआरआईआईपी-	सीएसआईआर-आईआईपी
व्यापार विकास एवं प्रौद्योगिकी विपणन	टीम-सीएसआईआरआईएमटीईसीएच-	सीएसआईआर-आईएमटीईसीएच
पंचवर्षीय योजना अवधि हेतु अत्य <mark>धिक महत्वपूर्ण</mark> सीएसआईआर प्रौद्योगिकी	टीम-सीएसआईआरएनएमएल-	सीएसआईआर-एनएमएल
सीएसआईआर युवा वैज्ञानिक पुरस्कार, 2014		
• जीव विज्ञान	डॉ. राजेन्द्र सिंह	सीएसआईआर-सीडीआरआई
	डॉ. विवेक टी नटराजन	सीएसआईआर-आईजीआईबी
• रसायन विज्ञान	डॉ. वी. गणेश	सीएसआईआर-सीईसीआरआई
	डॉ. पी.पी. सिंह	सीएसआईआर-आईआईआईएम
 पृथ्वी, भूमंडल, महासागर एवं ग्रह विज्ञान 	डॉ. सुमित कुमार मिश्रा	सीएसआईआर-एनपीएल
 इंजीनियरी विज्ञान 	डॉ. एम.डी. गोयल	सीएसआईआर-एएमपीआरआई
 भौतक विज्ञान (उपकरण सहित) 	श्री एन. सिल्वाकुमार	सीएसआईआर-एनएएल
marial (or a called)	डॉ. वी.वी. अग्रवाल	सीएसआईआर-एनपीएल
राष्ट्रीय निर्माण हेतु डॉ. मोहन धारिया पुरस्कार	डॉ. आर.ए. माशेलकर	पूर्व महानिदेशक-सीएसआईआर
सीआरएसआई कांस्य पदक - 2015	डॉ. दीपक कुमार दत्ता	सीएसआईआर-एनईआईएसटी
आईएनएसए युवा वैज्ञानिक पदक – 2014	डॉ. जून घोष	सीएसआईआर-आईआईसीबी
	डॉ. चारू लता	सीएसआईआर-एनबीआरआई
	श्री गौरव वर्मा	सीएसआईआर-आईजीआईबी
राष्ट्रीय भू-विज्ञान पुरस्कार – 2013	डॉ. के.के.के. सिंह	सीएसआईआर-सीआईएमएफआर
	डॉ. ए.के. साहू	सीएसआईआर-आईएमएमटी
	डॉ. राजेश अग्निहोत्री	सीएसआईआर-एनपीएल
	डॉ. ए.के. सिंह	सीएसआईआर-सीआईएमएफआर
	डॉ. पी.चक्रबर्ती	सीएसआईआर-एनआईओ
ब्रह्मोस कार्पोरेशन लिमिटेड का श्रेष्ठ प्रयोगशाला पुरस्कार	सीएसआईआर-एनएएल	सीएसआईआर-एनएएल
एमआरएसआई पदक – 2014	डॉ. एन. केलाइसेल्वी	सीएसआईआर-सीईसीआरआई
एमआरएसआई पदक — 2015	डॉ. एस. गोपूकुमार	सीएसआईआर-सीईसीआरआई
	डॉ. अजय धर	सीएसआईआर-एनपीएल
फैलो, खाद्य वैज्ञानिक एवं प्रौद्योगिकीविद् संघ (भारत), मैसूर	डॉ. वी.के. मोदी	सीएसआईआर-सीएफटीआरआई
आन्ध्रप्रदेश विज्ञान अकादमी, भारत अकादमी	डॉ. के.एस.एम.एस राघवराव	सीएसआईआर-सीएफटीआरआई
फेलो, खाद्य वैज्ञानिक एवं प्रौद्योगिकीविद्, भारत	डॉ. के.एस.एम.एस राघवराव	सीएसआईआर-सीएफटीआरआई
ग्लोबल इकोनोमिक प्रोग्रेस एंड रिसर्च एसोसिएशन	डॉ. सुकुमार देबनाथ	सीएसआईआर-सीएफटीआरआई
(जीईपीआरए), नई दिल्ली द्वारा <mark>इन्दिरा गांधी सद्भावना स्</mark> वर्ण		
पदक पुरस्कार		
चेयरमैन, फूड एडिटिव्स सेक्शनल कमेटी, बीआईएस, नई	डॉ. मुकुल दास	सीएसआईआर-सीएफटीआरआई
दिल्ली		
एक्सपर्ट मेम्बर ऑन फूड एडिटिव्स, फलेवरिंग्स, प्रोसेसिंग	डॉ. मुकुल दास	सीएसआईआर-सीएफटीआरआई
ऐड्स एंड मैटिरियल्स इन कांटेक्ट विद फूड,		
एफएसएसएआई, नई दिल्ली		

9वॉं एनएएसआई स्कोपस युवा वैज्ञानिक पुरस्कार	डॉ. एस.एन. भट्टाचार्य	सीएसआईआर-आईआईसीबी
	डॉ. आर.के. चतुर्वेदी	सीएसआईआर-आईआईटीआर
एनएएसआई युवा वैज्ञानिक प्लेटिनम जुबली पुरस्कार	डॉ. बी.के. जेना	सीएसआईआर-आईएमएमटी
	डॉ. सुमित घोष	सीएसआईआर-सीआईएमएपी
सोसाइटी ऑव टॉक्सीकोलॉजी, यूएसए के चुने हुए	डॉ. के.एम. अंसारी	सीएसआईआर-आईआईटीआर
पूर्णकालिक सदस्य		
वर्ष हेतु एनएएसआई सदस्य 2014	डॉ. पूजा खरे	सीएसआईआर-सीआईएमएपी
	डॉ. गौतम पांडा	सीएसआईआर-सीडीआरआई
	डॉ. करूण शंकर	सीएसआईआर-सीआईएमएपी
	डॉ. एफ मलिक .ए.	सीएसआईआर-आईआईआईएम
जेसी बोस नेशनल फैलोशिप -2015	डॉ. ए. अजयघोष	सीएसआईआर-एनआईआईएसटी
	डॉ. मधु दीक्षित	सीएसआईआर-सीडीआरआई
	डॉ. अनुराधा दूबे	सीएसआईआर-सीडीआरआई
आईईटीई - हरी रामजी तोश्णीवाल पुरस्कार -2014	डॉ. संजीव कुमार	सीएसआईआर-सीएसआईओ
डीएसटी – लॉकहीड मार्टिन इंडिया इनोवेशन ग्रोथ -2014	डॉ. ए. ज्ञानमणि	सीएसआईआर-सीएलआरआई
पुरस्कार	डॉ. एस.के. धवन	सीएसआईआर-एनपीएल
वर्ष 2014-15 हेतु आईआईसीएचई <mark>डॉ. वाई. नायुडम्मा</mark>	डॉ. सी. मुरलीधरन	सीएसआईआर-सीएलआरआई
प्रौद्योगिकी श्रेष्ठता पुरस्कार		
वांतरिक्ष इंजीनियरी में आईईआई युवा इंजीनियर्स पुरस्कार	डॉ. वी. सेन्थीकुमार	सीएसआईआर-4पीआई

2014-15

संलग्नक-॥

वर्ष 2014-2015 के दौरान फाइल किए गए और स्वीकृत सीएसआईआर पेटेंट आवेदन

प्रयोगशाला	भारत	Г	विदे	विदेश	
	फाइल किए गए	स्वीकृत	फाइल किए गए	स्वीकृत	
सीएसआईआर-एएमपीआरआई	0	1	2	0	
सीएसआईआर-सीबीआरआई	2	0	0	0	
सीएसआईआर-सीसीएमबी	0	0	5	9	
सीएसआईआर-सीडीआरआई	10	1	9	8	
सीएसआईआर-सीईसीआरआई	8	3	6	12	
सीएसआईआर-सीईईआरआई	6	1	0	0	
सीएसआईआर-सीएफटीआरआई	8	7	0	4	
सीएसआईआर-सीजीसीआरआई	5	5	5	0	
सीएसआईआर-सीआईएमएपी	2	0	1	3	
सीएसआईआर-सीआईएमएफआर	2	3	0	5	
सीएसआईआर-सीएलआरआई	29	4	5	0	
सीएसआईआर-सीएमईआरआई	0	0	0	0	
सीएसआईआर-सीआरआरआई	3	0	3	0	
सीएसआईआर-सीएसआईओ	4	1	0	0	
सीएसआईआर-स्कीम्स	4	2	0	15	
सीएसआईआर-सीएसएमसीआरआई	10	3	69	55	
सीएसआईआर-4पीआई	0	0	0	0	
सीएसआईआर-आईजीआईबी	1	1	3	5	
सीएसआईआर-आईएचबीटी	3	0	11	5	
सीएसआईआर-आईआईसीबी	2	2	2	4	
सीएसआईआर-आईआईसीटी	16	6	13	49	
सीएसआईआर-आईआईआईएम	7	0	14	5	
सीएसआईआर-आईआईपी	17	5	17	9	
सीएसआईआर-आईआईटीआर	0	0	1	0	
सीएसआईआर-आईएमएमटी	4	3	1	4	
प्रयोगशाला	भारत	विदेश	प्रयोगशाला	भारत	
	फाइल किए गए	स्वीकृत		फाइल किए गए	
सीएसआईआर-आईएमटी	2	1	10	5	
सीएसआईआर-एनएएल	9	1	8	4	
सीएसआईआर-एनबीआरआई	6	0	14	1	
सीएसआईआर-एनसीएल	108	4	205	82	
सीएसआईआर-एनईईआरआई	1	2	1	1	

सीएसआईआर-एनईआईएसटी	7	2	6	6
सीएसआईआर-एनजीआरआई	0	0	5	6
सीएसआईआर-एनआईआईएसटी	2	2	21	21
सीएसआईआर-एनआईओ	1	0	1	0
सीएसआईआर-एनएमआईटीएलआई	0	1	1	6
सीएसआईआर-एनएमएल	15	3	1	0
सीएसआईआर-एनपीएल	12	1	8	12
सीएसआईआर-एसईआरसी	4	0	0	0
जोड़	310	65	448	336

2014-15

संलग्नक -॥क

वर्ष 2014-15 के दौरान सीएसआईआर को प्रदान किए गए विदेशी पेटेन्ट

क्र.	देश	पेटेन्ट नं.	अन्वेषण का शीर्षक	अन्वेषक
सं.				
सीएसआईअ	ार-सीसीएमबी			
1	आस्ट्रेलिया	2009233322	टु डेवलप ए सेल मॉडल सिस्टम टु स्टडी मल्टीस्टेज कैंसर	जिंका राजेश्वरी, गोपाल पांडे
2	स्विटजरलैंड	2268318	टु डेवलप ए सेल मॉडल सिस्टम टु स्टडी मल्टीस्टेज कैंसर	जिंका राजेश्वरी, गोपाल पांडे
3	ईपीओ	2268318	टु डेवलप ए सेल मॉडल सिस्टम टु स्टडी मल्टीस्टेज कैंसर	जिंका राजेश्वरी, गोपाल पांडे
4	स्पेन	2268318	टु डेवलप ए सेल मॉडल सिस्टम टु स्टडी मल्टीस्टेज कैंसर	जिंका राजेश्वरी, गोपाल पांडे
5	फ्रांस	2268318	टु डेवलप ए सेल मॉडल सिस्टम टु स्टडी मल्टीस्टेज कैंसर	जिंका राजेश्वरी, गोपल पांडे
6	यूके	2268318	टु डेवलप ए सेल मॉडल सिस <mark>्टम टु स्टडी म</mark> ल्टीस्टेज कैंसर	जिंका राजेश्वरी, गोपाल पांडे
7	नीदरलैंड्स	2268318	टु डेवलप ए सेल मॉडल सिस <mark>्टम टु स्टडी</mark> मल्टीस्टेज कैंसर	जिंका राजेश्वरी, गोपाल पांडे
8	फिलिपिन्स	1-2008-501369	न्यूक्लियर एसिड्स एंड मेथॉड्स फॉर प्रॉड्यूसिंग सीड्स हैविंग ए फुल डिप्लॉइड कॉम्प्लिमेंट ऑव दे मेटरनल जीनोम इन द एम्ब्रयो	रवि मरूथाचलम, मोहन प्रेम आनन्द, मारिमुथु, इमरान सिद्दीकी
9	यूएसए	8878002	न्यूक्लियर एसिड्स एंड मेथॉड्स फॉर प्रॉड्यूसिंग सीड्स हैविंग ए फुल डिप्लॉइड कॉम्प्लिमेंट ऑव दे मेटरनल जीनोम इन द एम्ब्रयो	रवि मरूथाचलम, मोहन प्रेम आनन्द, मारिमुथु, इमरान सिद्दीकी
सीएसआई	आर-सीडीआरआई			
10	आस्ट्रेलिया	2010217238	पॉलिमेरिक नैनोमेट्रिक्स एसोसिएटेड डिलीवरी ऑव कैम्पफेरोल इन रैट्स टु इम्प्रूव इट्स ऑस्टियोजेनिक एक्शन	प्रभात रंजन मिश्रा, रितु त्रिवेदी, गिरीश कुमार गुप्ता, अविनाश कुमार, वर्षा गुप्ता, श्रीकांत कुमार रथ, कामिनी श्रीवास्तव, नैबेद्य चट्टोपाध्याय, अनिल कुमार द्विवेदी
11	जापान	5719775	सब्स्टीट्यूटेड बेंजफ्यूरोक्रोमेन्स एंड रिलेटेड कम्पाउंड्स फॉर द प्रिवेंशन एंड ट्रीटमेंट ऑव बोन रिलेटेड डिस्ऑर्डर्स	अतुल गोयल, अमित कुमार, सुमित कुमार चौरसिया, दिव्या सिंह, अबनीश कुमार गौतम, रश्मि पांडे, ऋतु त्रिवेदी, मन मोहन सिंह, नैबेद्य चट्टोपाध्याय, लक्ष्मी मनिकावासागम, गिरीश कुमार जैन, अनिल कुमार द्विवेदी

12	फिलिपिन्स	1-2010-502187	नोवल हाइड्रॉक्सी फंक्शनलाज्ड 1, 2, 4-	चन्दन सिंह, वेद प्रकाश वर्मा,
		1 2010 002 101	ट्राइऑक्सेन्स एंड देयर डेरीबेटिव्स यूजफुल एज एंटी मलेरियल एजेंट्स एंड ए प्रोसेस फॉर द प्रिपेरेशन देयरऑव	सुनील कुमार पुरी
13	यूएसए	8946261	सब्स्टीट्यूटेड 1, 2, 3, 4-टेट्राहाड्रोक्यूनोलीन 7-yl कार्बामेट्स एज एसेटाइलकॉलिनेस्टेरेज इनहिबिटर्स फॉर ट्रीटमेंट ऑव एल्जाइमर्स डिजीज	कुलदीप कुमार रॉय, संतोष कुमार तोता, चण्डीश्वर नाथ, राकेश शुक्ला, अनिल कुमार सक्सेना
14	यूएसए	8946682	डोनर-एक्सेप्टर फ्लुओरेन स्केफोल्ड्स: ए प्रोसेस एंड यूजेज देयरऑव	अतुल गोयल, सुमित चौरसिया, विजय कुमार, सुन्दर मनोहरन, आर. एस आनन्द
15	यूएसए	8921417	मेथॉड ऑव ट्रीटिंग डिस्लिपिडेमिया यूजिंग नेचुरली अकरिंग डाइटरपेने	कोनेनी-वेंकट शशिधर, अंजु पुरी, जम्मीकुन्तला नागा रौसैया
16	यूएसए	8686028	सब्स्टीट्यूटेड बेंजफ्यूरोक्रोमेन्स एंड रिलेटेड कम्पाउंड्स फॉर द	अतुल गोयल, अमित कुमार, सुमित कुमार चौरसिया, दिव्या सिंह, अबनीश कुमार गौतम, रश्मि पांडे, ऋतु त्रिवेदी, मन मोहन सिंह, नैबेद्य चट्टोपाध्याय, लक्ष्मी मनिकावासागम, गिरीश कुमार जैन, अनिल कुमार द्विवेदी
17	यूएसए	8815940	कॉमरान-केलकोन्स एज एन्टीकैंसर एजेंट्स	कोनेनी-वेंकट शशिधर, अबधेश कुमार, मनोज कुमार, जयंत सरकार, सुधीर कुमार सिन्हा
सीएसआई	्। आर-सीईसीआरआई			7 3 3
18	जर्मनी	2249950	न्यू टाइप्स ऑफ सेल्फ सपोर्टेड पॉलिमेरिक हाइब्रिड मेम्ब्रेंस फॉर एयर ह्यूमिडिफिकेशन इन पॉलीमर इलेक्ट्रोलाइट फ्यूइल सेल स्टेक्स	अशोक कुमार शुक्ला, सेथुरमन पित्चुमणि, पार्थसारथि श्रीधर, संतोष कुमार दत्तात्रेय भट्ट, अय्यप्पन रूयप्पन, मनोकरन, अखिल कुमार साहू
19	जर्मनी	ईपी2630686	ए हाई वॉल्टेज प्रफॉर्मेंस लेयर्ड कैथोड मेटेरियल फॉर लीथियम आयन बैटरीज	सुकुमारन गोपुकुमार, चन्द्र शेखरन निथ्या, रामासामी थिरूनाकरन, अरूमुगम सिवाशनमुगम
20	ईपीओ	ईपी2630686	ए हाई वॉल्टेज प्रफॉर्मेंस लेयर्ड कैथोड मेटेरियल फॉर लीथियम आयन बैटरीज	सुकुमारन गोपुकुमार, चन्द्र शेखरन निथ्या, रामासामी थिकनाकरन, अक्तमुगम सिवाशनमुगम

21	ईपीओ	2249950	न्यू टाइप्स ऑफ सेल्फ सपोर्टेड पॉलिमेरिक हाइब्रिड	अशोक कुमार शुक्ला, सेथुरमन
			मेम्ब्रेंस फॉर एयर ह्यूमिडिफिकेशन इन पॉलीमर	पित्चुमणि, पार्थसारथि श्रीधर,
			इलेक्ट्रोलाइट फ्यूइल सेल स्टेक्स	संतोष कुमार दत्तात्रेय भट्ट,
				अय्यप्पन, मनोकरन, अखिल
				कुमार साहू
22	स्पेन	ईपी2630686	ए हाई वॉल्टेज प्रफॉर्मेंस लेयर्ड कैथोड मेटेरियल फॉर	सुकुमारन गोपुकुमार, चन्द्र
			लीथियम आयन बैटरीज	शेखरन निथ्या, रामासामी
				थिरूनाकरन, अरूमुगम
				सिवाशनमुगम
23	फ्रांस	ईपी 2630686	ए हाई वॉल्टेज प्रफॉर्मेंस लेयर्ड कैथोड मेटेरियल फॉर	सुकुमारन गोपुकुमार, चन्द्र
			लीथियम आयन बैटरीज	शेखरन निथ्या, रामासामी
				थिरूनाकरन, अरूमुगम
				सिवाशनमुगम
24	यूके	ईपी 2630686	ए हाई वॉल्टेज प्रफॉर्मेंस लेयर्ड कैथोड मेटेरियल फॉर	सुकुमारन गोपुकुमार, चन्द्र
			लीथियम आयन बैटरी <mark>ज</mark>	शेखरन निथ्या, रामासामी
				थिरूनाकरन, अरूमुगम
				सिवाशनमुगम
25	इटली	2249950	न्यू टाइप्स ऑफ सेल्फ सपोर्टेड पॉलिमेरिक हाइब्रिड	अशोक कुमार शुक्ला, सेथुरमन
			मेम्ब्रेंस फॉर एयर ह्यूमिडिफिकेशन इन पॉलीमर	पित्चुमणि, पार्थसारिथ श्रीधर,
			इलेक्ट्रोलाइट फ्यूइल सेल स्टेक्स	संतोष कुमार दत्तात्रेय भट्ट,
				अय्यप्पन, मनोकरन, अखिल
				कुमार साहू
26	जापान	5528357	न्यू टाइप्स ऑफ सेल्फ सपोर्टेड पॉलिमेरिक हाइब्रिड	अशोक कुमार शुक्ला, सेथुरमन
			मेम्ब्रेंस फॉर एयर ह्यूमिडिफिकेशन इन पॉलीमर	पित्चुमणि, पार्थसारिथ श्रीधर,
			इलेक्ट्रोलाइट फ्यूइल सेल स्टेक्स	संतोष कुमार दत्तात्रेय भट्ट,
				अय्यप्पन, मनोकरन, अखिल
				कुमार साहू
27	जापान	5707499	ए हाई वॉल्टेज प्रफॉर्मेंस लेयर्ड कैथोड मेटेरियल फॉर	सुकुमारन गोपुकुमार, चन्द्र
			लीथियम आयन बैटरीज	शेखरन निथ्या, रामासामी
				थिरूनाकरन, अरूमुगम
				सिवाशनमुगम
28	नीदरलैंड्स	ईपी 2630686	ए हाई वॉल्टेज प्रफॉर्मेंस लेयर्ड कैथोड मेटेरियल फॉर	सुकुमारन गोपुकुमार, चन्द्र
			लीथियम आयन बैटरीज	शेखरन निथ्या, थिरूनाकरन
				रामासामी, सिवाशनमुगम
				अरूमुगम
29	यूएसए	8932782	प्रोसेस फॉर द प्रिपेरेशन ऑव सोल-जैल मॉडीफाइड	अखिला कुमार साहू, गणेश
			ऑल्टर्नेटिव नेफिऑन-सिलिका कॉम्पोजिट मेम्ब्रेन	सेल्वारानी, सेथुरमण
			यूजफुल फॉर पॉलीमर इलेक्ट्रोलाइट पयूल सैल	पित्चुमणि, पार्थसारथी श्रीधर,
		5		अशोक कुमार शुक्ला
	गईआर-सीएफटीआरआ	·		
30	बांग्लादेश	1004293	ए किट टु डिटेक्ट फ्लुओराइड कंटेंट इन वॉटर	रस. अनीथा, एस. विश्वनाथ, राव

31	श्री लंका	14133	एन एथर्मल प्रोसेस फॉर द कंसंट्रेशन ऑन	चिन्नास्वामी आनन्द रामाकृष्णन,
			गार्सिनिया एक्स्ट्रेक्ट	नवीन नागराज,
				गुङ्डादारंगव्वनाहल्ली कृष्णारेङ्डी
				जयप्रकाश, भबानी सरकार जेना
32	मलेशिया	एमवाई-151090-ए	ए प्रोसेस फॉर रेडी-टु.ईंट हैल्थ स्नैक फूड	आर. वेट्टीमणि, आर. साईमनोहर,
02	NIKI III	, THE 101000 ;	, much meter 3.40 cc 1 cm 20	के. लीलावती, वी. भास्करन, के.
				वेंकटेशमूर्ति, टी आर प्रभु,
				पी.एच.राव, वी प्रकाश
33	वियतनाम	12664	ए प्रोसेस फॉर द प्रिपेरेशन ऑव पाचा टेंट फ्री टी	श्रीकांतय्या नाग लक्ष्मी, लिंगमुल्ला
	1330111	12004	यूजिंग एन्जाइम्स	जगन मोहन राव, नंजुन्दस्वामी
			7011 / 3114 //	चन्द्रशेखर, रामास्वामी
				षणमुगसुन्दरम सेंथिल कुम
<u>जीएमआर्ट</u>	 आर-सीआईएमएपी			11313 441 411-1413
34	आस्ट्रेलिया	2010231489	नॉवल एंटीसाइकोटिक एक्टिविटी इन द लीफ	संतोष कुमार श्रीवास्तव, अशोक
34	SILXIVIAI	2010201703	एक्स्ट्रेक्ट्स ऑन राउवोल्फिआ टेट्राफिला एंड	कुमार अग्रवाल, सुभाष चन्द सिंह,
			देयर यूजफूल हर्बल फॉर्मुलेशन्स	विजय कुमार खन्ना, जनार्दन सिंह,
			प्यर पूजानुस्य व्यव नगनुवास रा	चन्देश्वर नाथ, मदन मोहन गुप्ता,
				शिखा गुप्ता, राम किशोर वर्मा,
				अनिर्बाण पाल, ध्यानेश्वर उमराव
				बावांकुले, धर्मेन्द्र सैकिया, अनिल
				कुमार गुप्ता, अनुपम मौर्या,
				सुमनप्रीत सिंह खनूजा
35	ई पीओ	1572618	एन इम्प्रूटड प्रोसेस फॉर द प्रोडक्शन ऑव	सुनील कुमार चट्टोपाध्याय, सचिन
			्रे ब्रेविफोलिऑल फ्रॉम टेक्सस वालिचिआना	श्रीवास्तव, अरविन्द सिंह नेगी,
				रंगनाथन शांता कुमार
				तिरूपडिरिपुलियूर, अंकुर गर्ग,
				सुमनप्रीत सिंह खनूजा
36	<u>य</u> ुके	1572618	एन इम्प्रूट्ड प्रोसेस फॉर द प्रोडक्शन ऑव	सुनील कुमार चट्टोपाध्याय, सचिन
			ब्रेविफोलिऑल फ्रॉम टेक्सस वालिचिआना	श्रीवास्तव, अरविन्द सिंह नेगी,
				रंगनाथन शांता कुमार
				तिरूपडिरिपुलियूर, अंकुर गर्ग,
				सुमनप्रीत सिंह खनूजा
सीएसआई	्। आर-सीआईएमएफआर	Ţ.		· ·
		जैडएल	ए डिवाइस फॉर रूफ सपोर्ट ऑव अण्डरग्राउंड	सुधीर कुमार कश्यप, अमलेन्दु
37	चीन	201180016360.5	माइन/टनल	सिन्हा
	(0)		ए डिवाइस फॉर रूफ सपोर्ट ऑव अण्डरग्राउंड	सुधीर कुमार कश्यप, अमलेन्दु
38	ईपीओ	2536919	माइन/टनल	सिन्हा
	47		ए डिवाइस फॉर रूफ सपोर्ट ऑव अण्डरग्राउंड	सुधीर कुमार कश्यप, अमलेन्दु
39	पौलेंड	2536919	माइन/टनल	सिन्हा
		00.10070	ट्रकिंग एंड मॉनीटरिंग सिस्टम फॉर ओपन कास्ट	लक्ष्मी कांता बद्योपाध्याय, स्वदेश
40	यूएसए	8816850	माइन्स	कुमार चॉल्या, पंकज कुमार मिश्रा
				5

41	जिम्बाबे	एपी2976	ए प्रोसेस फॉर द प्रोडक्शन ऑव प्लांट ग्रोथ	एसआर राव, एस.के. घोष, जी सिंह
			स्टिमुलेटर फ्रॉम फ्लाई ऐश	एसके हजरा
सीएसआई	आर-सीएसआईआर य	ोजना		
42	आस्ट्रेलिया	2008350790	टेंडम क्रॉपिंग ऑव टू फूड ग्रेन्स इन द विंटर सीजन एग्रोक्लाइमेट ऑव द इंडो-गेंगेटिक प्लेन्स एरिया फॉर इन्क्रीज्ड प्रोडेक्शन ऑव व्हीट एण्ड मस्टर्ड	सुशील कुमार
43	स्विटजरलैंड	2501706	सिंथेसिस ऑव नोवल 3-सब्स्टीट्यूटेड (7-इमीनो- 2-थिऑक्सो-3, 7-डिहाइड्रो-2h-थियाजोलो 4, 5- d] पाइरिमिडिन-6-yl)- यूरिया एंड फुरान-2- कार्बोजाइलिक एसिड (7-इमीनो-2-थिऑक्सो-3, 7-डिहाइड्रो-2h-थियाजोलो 4, 5-d] पाइरिमिडिन- 6-yl) एमाइड एज पोटेंशियल एडेनोजाइन A _{2A} रिसेप्टर एन्टागोनिस्ट्स	प्रतिभा मेहता लूथरा, चन्द्र भूषः मिश्रा
44	जर्मनी	2501706	सिंथेसिस ऑव नोवल 3-सब्स्टीट्यूटेड (7-इमीनो- 2-थिऑक्सो-3, 7-डिहाइड्रो-2h-थियाजोलो 4, 5- d] पाइरिमिडिन-6-yl)- यूरिया एंड फुरान-2- कार्बोजाइलिक एसिड (7-इमीनो-2-थिऑक्सो-3, 7-डिहाइड्रो-2h-थियाजोलो 4, 5-d] पाइरिमिडिन- 6-yl) एमाइड एज पोटेंशियल एडेनोजाइन A _{2A} रिसेप्टर एन्टागोनिस्ट्स	प्रतिभा मेहता लूथरा, चन्द्र भूष मिश्रा
45	जर्मनी	2115473	कैंसर ऑव गिंगिवो बकल कॉम्प्लेक्स : न्यू मार्कर्स फॉर ट्रांसफॉम्र्ड एपिथेलियम <mark>फॉर अर्ली</mark> डिटेक्शन, प्रोग्नोसिस एंड पोटेंशिल टार्गेट्स फॉर थेरेपी	महेश जिंगडे सुरेखा, रूकिमण् बालकृष्णा गोवेकर, साधना खन्न निखिल सुरेशकुमार गडेवात केतायुन अर्देशिर दिनशॉ, अर्ना कैथ डी क्रूज, आलोक कुमार पाठव रोशन फारोख चिनॉय, जय प्रका अग्रवाल, रवि सरदेशमुख, कुर श्रीनिवासचारलू सुन्दरम
46	ईपीओ	2115473	कैंसर ऑव गिंगिवो बकल कॉम्प्लेक्स : न्यू मार्कर्स फॉर ट्रांसफॉम्र्ड एपिथेलियम फॉर अर्ली डिटेक्शन, प्रोग्नोसिस एंड पोटेंशिल टार्गेट्स फॉर थेरेपी	महेश जिंगडे सुरेखा, रूकिमा बालकृष्णा गोवेकर, साधना खन्न निखिल सुरेशकुमार गडेवार केतायुन अर्देशिर दिनशॉ, अर्ना कैथ डी क्रूज, आलोक कुमार पाठव रोशन फारोख चिनॉय, जय प्रका अग्रवाल, रवि सरदेशमुख, कुर श्रीनिवासचारलू सुन्दरम
47	ईपीओ	2501706	सिंथेसिस ऑव नोवल 3-सब्स्टीट्यूटेड (7-इमीनो- 2-थिऑक्सो-3, 7-डिहाइड्रो-2h-थियाजोलो 4, 5- d] पाइरिमिडिन-6-yl)- यूरिया एंड फुरान-2- कार्बोजाइलिक एसिड (7-इमीनो-2-थिऑक्सो-3, 7-डिहाइड्रो-2h-थियाजोलो 4, 5-d] पाइरिमिडिन-	प्रतिभा मेहता लूथरा, चन्द्र भूष मिश्रा

			6-yl) एमाइड एज पोटेंशियल एडेनोजाइन A _{2A}	
			रिसेप्टर एन्टागोनिस्ट्स	
48	स्पेन	2115473	केंसर ऑव गिंगिवो बकल कॉम्प्लेक्स : न्यू मार्कर्स फॉर ट्रांसफॉर्म्ड एपिथेलियम <mark>फॉर अर्ली</mark> डिटेक्शन, प्रोग्नोसिस एंड पोटेंशिल टार्गेट्स <mark>फॉर थेरे</mark> पी	महेश जिंगडे सुरेखा, क्तिमणी बालकृष्णा गोवेकर, साधना खन्ना, निखिल सुरेशकुमार गडेवाल, केतायुन अर्देशिर दिनशॉ, अनलि कैथ डी क्रूज, आलोक कुमार पाठक, रोशन फारोख चिनॉय, जय प्रकाश अग्रवाल, रवि सरदेशमुख, कुरम श्रीनिवासचारलू सुन्दरम
49	फ्रांस	2501706	सिंथेसिस ऑव नोवल 3-सब्स्टीट्यूटेड (7-इमीनो- 2-थिऑक्सो-3, 7-डिहाइड्रो-2h-थियाजोलो 4, 5- d] पाइरिमिडिन-6-yl)- यूरिया एंड फुरान-2- कार्बोजाइलिक एसिड (7-इमीनो-2-थिऑक्सो-3, 7-डिहाइड्रो-2h-थियाजोलो 4, 5-d] पाइरिमिडिन- 6-yl) एमाइड एज पोटेंशियल एडेनोजाइन A _{2A} रिसेप्टर एन्टागोनिस्ट्स	प्रतिभा मेहता लूथरा, चन्द्र भूषण मिश्रा
50	फ्रांस	2115473	कैंसर ऑव गिंगिवो बकल कॉम्प्लेक्स : न्यू मार्कर्स फॉर ट्रांसफॉर्म्ड एपिथेलियम फॉर अर्ली डिटेक्शन, प्रोग्नोसिस एंड पोटेंशिल टार्गेट्स फॉर थेरेपी	महेश जिंगडे सुरेखा, रूकिमणी बालकृष्णा गोवेकर, साधना खन्ना, निखिल सुरेशकुमार गडेवाल, केतायुन अर्देशिर दिनशॉ, अनलि कैथ डी क्रूज, आलोक कुमार पाठक, रोशन फारोख चिनॉय, जय प्रकाश अग्रवाल, रिव सरदेशमुख, कुरम श्रीनिवासचारलू सुन्दरम
51	यूके	2501706	सिंथेसिस ऑव नोवल 3-सब्स्टीट्यूटेड (7-इमीनो- 2-थिऑक्सो-3, 7-डिहाइड्रो-2h-थियाजोलो 4, 5- d] पाइरिमिडिन-6-yI)- यूरिया एंड फुरान-2- कार्बोजाइलिक एसिड (7-इमीनो-2-थिऑक्सो-3, 7-डिहाइड्रो-2h-थियाजोलो 4, 5-d] पाइरिमिडिन- 6-yI) एमाइड एज पोटेंशियल एडेनोजाइन A _{2A} रिसेप्टर एन्टागोनिस्ट्स	प्रतिभा मेहता लूथरा, चन्द्र भूषण मिश्रा
52	इटली	2115473	कैंसर ऑव गिंगिवो बकल कॉम्प्लेक्स : न्यू मार्कर्स फॉर ट्रांसफॉर्म्ड एपिथेलियम फॉर अर्ली डिटेक्शन, प्रोग्नोसिस एंड पोटेंशिल टार्गेट्स फॉर थेरेपी	महेश जिंगडे सुरेखा, रूक्मिणी बालकृष्णा गोवेकर, साधना खन्ना, निखिल सुरेशकुमार गडेवाल, केतायुन अर्देशिर दिनशॉ, अनलि कैथ डी क्रूज, आलोक कुमार पाठक, रोशन फारोख चिनॉय, जय प्रकाश अग्रवाल, रवि सरदेशमुख, कुरम श्रीनिवासचारलू सुन्दरम

	1 0 .		2014-13	
53	श्री लंका	14881	डेवलपमेंट ऑव न्यू ग्रेड्स ऑव रबर्स बाइ ग्राफ्टिंग विद मेटाअल्केनाइल फेनल्स एंड इट्स डेरिवेटिव्स	गोलोक बिहारी नन्दो, तिरूचनुर विक्रम
54	यूएसए	8951720	मार्कर्स फॉर ट्रांसफॉर्म्ड एपिथेलियम एंड पोटेंशियल टार्गेट्स फॉर थेरेपी ऑव कैंसर ऑव द गिंगिवो बकल काम्प्लेक्स	महेश जिंगडे सुरेखा, रुक्मिणी बालकृष्णा गोवेकर, साधना खन्ना, निखिल सुरेशकुमार गडेवाल,
			वपारा पगन्यापत्त	केतायुन अर्देशिर दिनशॉ, अनलि कैथ डी क्रूज, आलोक कुमार पाठक, रोशन फारोख चिनॉय, जय प्रकाश
				अग्रवाल, रवि सरदेशमुख, कुरम श्रीनिवासचारलू सुन्दरम
55	यूएसए	8883419	मेथड्स एंड किट्स यूजफुल फॉर द आइडेंटिफिकेशन ऑव एस्ट्रोसाइटोमा, इट्स ग्रेड्स एंड ग्लिओब्लास्टोना प्रोग्नोसिस	कुमारावेल सोमसुंदरम, पतारू कोंडइयाह, वाणी संतोष, आनन्द बालासुब्रामनियम, अलंगर सत्यरंजनदास हेगडे, बंगलोरे अश्वथनारायण राव चन्द्रमौली, मनचनाहल्ली रंगा स्वामी
56	यूएसए	8835442	3-सब्स्टीट्यूटेड (७-इमीनो-२-थिऑक्सो-३, ७- डिहाइड्रो-२h-थियाजोलो ४, ५-d] पाइरिमिडिन-६- yl)- यूरिया एंड प्रोसेस फॉर प्रीप्रेशन देअर ऑव	सत्यनारायण राव प्रतिभा मेहता लूथरा, चन्द्र भूषण मिश्रा
0	<u> </u>		प्रा)- यूरिया एक प्रारास प्राप्त प्राप्तरान प्रकार जाय	
भीएसआई 57	आर-सीएसएमसीआर आस्ट्रेलिया	आ ई 2010290847	नोवल प्रोसेस फॉर द प्रिपरेशन ऑव	पुष्पितो कुमार घोष, संध्या चन्द्रिका
			पॉलीहाइड्रोजाइल्कानोट एंड हाई डेंसिटी शैल ब्रिकेट इंटेग्रेटेड विद इम्प्रूट्ड प्रोसेस ऑव प्रोडक्शन ऑव मिथाइल ईस्टर फ्रॉम होल सीड कैप्सूल ऑव जेट्रोफा करकस	प्रसाद मिश्रा, महेश रमणीक लाल गांधी, सुमेश चन्द्र उपाध्याय, परिमल पॉल, प्रीतपाल सिंह आनन्द, किरीटकुमार मंगलदास पोपट,
			0/2/17/1 47(47(1	अनुपमा विजयकुमार श्रीवास्तव, संजीव कुमार मिश्रा, नीलम ओधिया, मारू रमेश डूडाभाई, गंगाधरण
				दयाल, हर्षद ब्रह्मभट्ट, विनोद बोरिशा, डूंगर रामचौधरी, बाबू लाल रेबारी, कृष्णदेवसिंह, सुखदेव सिंह जाला
58	आस्ट्रेलिया	2011225811	प्रिपरेशन ऑव इनऑर्गेनिक हाइड्रोजेल्स विद अल्काली हेलीडेस	अजित सिंह, विश्वजीत गांगुली
59	आस्ट्रेलिया	2010228846	इंटेग्रेटेड प्रोसेस ऑव प्रोडक्शन ऑव पोटेशियम सल्फेट, मेग्नेशियम हाइड्रोक्साइड एंड अमोनियम सल्फेट फ्रॉम काइनाइट मिक्स्ड सॉल्ट एंड अमोनिया	पुष्पितो कुमार घोष, हरेश महीपतलाल मोदी, जतिन रमेशचन्द्र चूनावाला, महेश कुमार रमणीक लाल गांधी, हरीचन्द्र बजाज, प्रत्यूष

				0 0 0 11
				हसीना हाजीभाई देरैया, उपेन्द्र पदमकांत सरैया
60	कनाडा	2664855	प्रिपरेशन ऑव ऑर्गेनिक-इनॉर्गेनिक हाइब्रिड काइरल सॉवेंट	सईद हसन रजी आब्दी, रुखसाना इलयास कुरेशी, नूर-उल हसन खान, राकेश वीर जसरा, विशाल जितेन्द्रभाई मयानी, ए संतोष
61	कनाड़ा	2629083	ए प्रोसेस फॉर द प्रिपरेशन ऑव सोडियम सिलिकेट फ्रॉम किम्बरलाइट टाइलिंग्स	राकेश वीर जसरा, हरी चन्द बजाज, राजेश शांतिलाल सोमानी, हरेश महिपतलाल मोदी, जितन रमेशचंद्र चूनावाला, देवेन्द्र लालजीभाई घेलानी, हेमल नरेन्द्र कुमार रनपारा, दीप्ति जीवनभाई बरोचिया, सुरेश चन्द्र, एम के धर, सी केशव राव, कमलेश कुमार
62	चीन	जੈडएल 201080050289.8	नोवल प्रोसेस फॉर द प्रिपरेशन ऑव पॉलीहाइड्रोजाइल्कानोट एंड हाई डेंसिटी शैल ब्रिक्वेट इंटीग्रेटेड विद इम्प्रूब्ड प्रोसेस ऑव प्रोडक्शन ऑव मिथाइल ईस्टर फ्रॉम होल सीड कैप्सूल ऑव जैट्राफा करकस	पुष्पितो कुमार घोष, संध्या चन्द्रिका प्रसाद मिश्रा, महेश रमणीकलाल गांधी, सुमेश चन्द्र उपाध्याय, परिमल पॉल, प्रीतपाल सिंह आनन्द, किरीटकुमार मंगलदास पोपट, अनुपमा विजयकुमार श्रीवास्तव, संजीव कुमार मिश्रा, नीलम ओंधिया, मारू रमेश डूडाभाई, गंगाधरण दयाल, हर्षद ब्रह्मभट्ट, विनोद बोरिशा, ढूंगर रामचौधरी, बाबू राम रेबारी, कृष्णदेव सिंह, सुखदेव सिंह जाला
63	चीन	जैडएल 201080009438.6	एन एम्प्रूव्ड प्रोसेस फॉर द ईको-फ्रेन्डली प्रपरेशन ऑव 3, 5- डाइब्रोमो-4 हाइड्रोक्साइबेंजोनाइट्राइल (ब्रोमोक्सिनिल)	सुब्बायारप्पा आदिमूर्ति, गर्ड रामचन्द्रैहा, गिरधर जोशी, राजेन्द्र पाटिल, महेशकुमार रमणीकलाल गांधी, मालमपत्ती सुब्बारेङ्डी, प्रत्यूष माइती
64	चीन	ਹੈ ਤएल 201080022405.5	ए मेथड ऑव प्रिपरेशन <mark>ऑव इनेन्टिओसेलेक</mark> ्टिव कॉम्पोजिट मेम्ब्रेन	कृपाल सिंह, हरी चन्द बजाज, प्रवीण गणेशराव इंगोले
65	चीन	जैंडएल 200980153346.2	एन इम्प्रूब्ड प्रोसेस फॉर द प्रिपरेशन ऑव पैरा- नाइट्रोबेंजाइल ब्रोमोड	मनोज कुंजबिहारी अग्रवाल, पुप्पितो कुमार घोष, महेशकुमार रमणीकलाल गांधी, सुमेश चंद्र उपाध्याय, सुब्बारयप्पा आदिमूर्ति, गड्डेरामचंद्रैया, यू परेश पटोलिया, गिरधर जोशी, हर्षद ब्रह्मभट्ट, राहुल जसवंत राय संघवी
66	चीन	जैडएल 201180030309.एक्स	प्रोडेक्शन ऑव पोर्टेबल वॉटर फ्रॉम हाईली सेलाइन सब-सोइल ब्राइन इन सॉल्ट वर्क्स यूजिंग एक्जास्ट	पुष्पितो कुमार घोष, गिरीश रजनीकांत देसले, भाविन

			वेस्ट हीट फॉर्म डीजल इंजिन इम्प्लॉयड राउंड द	हसमुखलाल खत्री, राजेशकुमार
			क्लॉक ड्यूरिंग द सॉल्ट मैनुफैक्चरिंग सीजन टु	नारनभाई पटेल, सनतकुमार
			चार्ज द सॉल्ट पैन्स विद सुसॉइल ब्राइन	नटवरलाल पटेल, महेश रामजीभाई
				गज्जर, नितिन गणेश बोरले
67	चीन	जै <mark>डएल 2011</mark> 80030309.एक्स	प्रिपरेशन ऑव हाईली एफिशिएंट हेट्रोजेनस	सईद हसन रजी आब्दी, रुखसाना
			केटालिस्ट फॉर ऐसिमेट्रिक नाइट्रोल्डॉल रिएक्शन	इलयास कुरैशी, नूर-उल-हसन
				खान, हरि चंद बजाज, विशाल
				जितेन्द्रभाई मयानी, अर्पण कीर्तिभाई
				शाह
68	चीन	जैडएल 201080017359.एक्स	इम्प्रूव्ड प्रोसेस फॉर द प्रिपरेशन ऑव एगारोज	रामावतार मीणा, कमलेशप्रसाद,
			पॉलीमर फ्रॉम सीवुड एक्स्ट्रेक्टिव	अरूप कुमार सिद्धांत, पुष्पितो कुमार
				घोष, गौरव कुमार, किशोर मेहता,
				भारतकुमार कालिदास रामावत,
				मीनाक्षी सुन्दरम गणेशन, भावनाथ
				झा, अविनाश मिश्रा, महेश
				रमणीकलाल गांधी, प्रदीपकुमार
				अग्रवाल, करूप्पनन ईस्वरन
69	जर्मनी	ईपी2408736	एन एम्प्रूव्ड प्रोसेस फॉर द ईको-फ्रेन्डली प्रपरेशन	सुब्बारयप्पा आदिमूर्ति, गडे
			ऑव 3, 5- डाइब्रोमो-4 हाइड्रोक्साइबेंजोनाइट्राइल	रामचन्द्रैया, गिरधर जोशी, राजेन्द्र
			(ब्रोमोक्सिनिल)	पाटिल, महेश कुमार रमणीकलाल
				गांधी, मालमपत्ती सुब्बारेड्डी,
				प्रत्यूष माइती
70	जर्मनी	2718453	प्रोसेस फॉर इंजिन वर्दी फैटी एसिड मिथाइल ईस्टर	संध्या चंद्रिका प्रसाद मिश्रा, पुष्पितो
			(बायोडीजल) फ्रॉम नेचुरली अकरिंग एण्ड कल्चर्ड	कुमार घोष, महेश रमणीकलाल
			माइक्रोअल्गल मैट	गांधी, सौरिष भट्टाचार्य, सुबर्ना मैती,
				सुमेश चंद्र उपाध्याय, संजीव कुमार
				मिश्रा, अनुपमा विजयकुमार
				श्रीवास्तव, इमरान पांचा, चेतन
				पालीवाल, तन्मय घोष, राहुल मौर्या,
				दीप्ति जैन, प्रबुद्ध गुप्ता, शैलेश कुमार
				पातिदार, अदिति शाह, अभिषेक
				साहू, विजय वेकरिया, कीर्तन दवे,
				हेतल बोसमिया, कृष्णदेवसिंह जाला
71	जर्मनी	10394353	प्रोसेस फॉर प्रोडक्शन ऑव ग्लाइसीन	पार्थसारथी दस्तीदार, पुष्पितो
			माइक्रोन्यूट्रिएंट एनरिच्ड नैक्ल क्रिस्टल्स विद	कुमार घोष, अमर बल्लभ,
			नियर स्फेरिकल शेप एंड इम्प्रूव्ड फ्लो	दरसकाक रमेशभाई त्रिवेदी,
			केरेक्टरस्टिक्स	अमिताव प्रमाणीक, वेलायुधन नाई
72	जर्मनी	2576522	Zn(II) बेस्ड कोलोरीमेट्रिक सेंसर्स एण्ड प्रोसेस	प्रसेनजीत मेहतो, अमृता घोष,
			फॉर द प्रिपरेशन देअरऑव	संजीव कुमार मिश्रा, अनुपमा
				श्रीवास्तव, संध्या मिश्रा, अभिताव
				दास

	1 - 2 - 1			
73	ईपीओ	2576522	Zn(II) बेस्ड कोलोरीमेट्रिक सेंसर्स एण्ड प्रोसेस फॉर द प्रिपरेशन देयरऑव	प्रसेनजीत मेहतो, अमृता घोष, संजीव कुमार मिश्रा, अनुपमा श्रीवास्तव, संध्या मिश्रा, अमिताव दास
74	ईपीओ	1771377	प्रिपरेशन ऑव ए नोबल आयोडाइजिंग एजेन्ट	पुष्पितो कुमार घोष, सतीश हरीराय मेहतो, जतिन रमेश चंद्र चूनावाला, मृणालबेन विनोदराय शेठ महेश रमणीकलाल गांधी
75	ईपीओ	2718453	प्रोसेस फॉर इंजिन वर्दी फेटी एसिड मिथाइल ईस्टर (बायोडीजल) फ्रॉम नेचुरली अकरिंग एण्ड कल्चर्ड माइक्रोअल्गल मैट	संध्या चंद्रिका प्रसाद मिश्रा, पुष्पितो कुमार घोष, महेश रमणीकलाल गांधी, सौरिष भट्टाचार्य, सुबर्ना मैती, सुमेश चंद्र उपाध्याय, संजीव कुमार मिश्रा, अनुपमा विजयकुमार श्रीवास्तव, इमरान पांचा, चेतन पालीवाल, तन्मय घोष, राहुल मौर्या, दीप्ति जैन, प्रबुद्ध गुप्ता, शैलेश कुमार पातिदार, अदिति शाह, अभिषेक साहू, विजय वेकरिया, कीर्तन दवे, हेतल बोसमिया, कृष्णदेवसिंह जाला
76	ईपीओ	ईपी2408736	एन एम्प्रूव्ड प्रोसेस फॉर द ईको-फ्रेन्डली प्रपरेशन ऑव 3, 5- डाइब्रोमो-4 हाइड्रोक्साइबेंजोनाइट्राइल (ब्रोमोक्साइनिल)	सुब्बारयप्पा आदिमूर्ति, गडे रामचन्द्रिश, गिरधर जोशी, राजेन्द्र पाटिल, महेशकुमार रमणीकलाल गांधी, मालमपत्ती सुब्बारेड्डी, प्रत्यूष माइती
77	स्पेन	ईपी2408736	एन एम्प्रूव्ड प्रोसेस फॉर द ईको-फ्रेन्डली प्रपरेशन ऑव 3, 5- डाइब्रोमो-4 हाइड्रोक्साइबेंजोनाइट्राइल (ब्रोमोक्सिनिल)	सुब्बारयप्पा आदिमूर्ति, गडे रामचन्द्रैया, गिरधर जोशी, राजेन्द्र पाटिल, महेश कुमार रमणीकलाल गांधी, मालमपत्ती सुब्बारेड्डी, प्रत्यूष माइती
78	स्पेन	2718453	प्रोसेस फॉर इंजिन वर्दी फेटी एसिड मिथाइल ईस्टर (बायोडीजल) फ्रॉम नेचुरली अकरिंग एण्ड कल्चर्ड माइक्रोअल्गल मैट	संध्या चंद्रिका प्रसाद मिश्रा, पुष्पितो कुमार घोष, महेश रमणीकलाल गांधी, सौरिष भट्टाचार्य, सुबर्ना मैती, सुमेश चंद्र उपाध्याय, संजीव कुमार मिश्रा, अनुपमा विजयकुमार श्रीवास्तव, इमरान पांचा, चेतन पालीवाल, तन्मय घोष, राहुल मौर्या, दीप्ति जैन, प्रबुद्ध गुप्ता, शैलेश कुमार पातिदार, अदिति शाह, अभिषेक साहू, विजय वेकरिया, कीर्तन दवे, हेतल बोसमिया, कृष्णदेवसिंह जाला

	10 4		1// ~ .0 «4000 (0 0 1
79	फिनलैंड	2718453	प्रोसेस फॉर इंजिन वर्दी फैटी एसिड मिथाइल ईस्टर (बायोडीजल) फ्रॉम नेचुरली अकरिंग एण्ड कल्चर्ड माइक्रोअल्गल मैट	संध्या चंद्रिका प्रसाद मिश्रा, पुष्पितो कुमार घोष, महेश रमणीकलाल गांधी, सौरिष भट्टाचार्य, सुबर्ना मैती, सुमेश चंद्र उपाध्याय, संजीव कुमार मिश्रा, अनुपमा विजयकुमार श्रीवास्तव, इमरान पांचा, चेतन पालीवाल, तन्मय घोष, राहुल मौर्या, दीप्ति जैन, प्रबुद्ध गुप्ता, शैलेश कुमार पातिदार, अदिति शाह, अभिषेक साहू, विजय वेकरिया, कीर्तन दवे, हेतल बोसमिया, कृष्णदेवसिंह जाला
80	फ्रांस	2718453	प्रोसेस फॉर इंजिन वर्दी फैटी एसिड मिथाइल ईस्टर (बायोडीजल) फ्रॉम नेचुरली अकरिंग एण्ड कल्चर्ड माइक्रोअल्गल मैट	संध्या चंद्रिका प्रसाद मिश्रा, पुष्पितो कुमार घोष, महेश रमणीकलाल गांधी, सौरिष भट्टाचार्य, सुबर्ना मैती, समेस चंद्र उपाध्याय, संजीव कुमार मिश्रा, अनुपमा विजयकुमार श्रीवास्तव, इमरान पांचा, चेतन पालीवाल, तोन्मोय घोष, राहुल मौर्या, दीप्ति जैन, प्रबुद्ध गुप्ता, शैलेश कुमार पातिदार, अदितिशाह, अभिषेक साहू, विजय वेकरिया, कीर्तन दवे, हेतल बोसमिया, कृष्णदेवसिंह जाला
81	फ्रांस	ईपी 2408736	एन एम्प्रूट्ड प्रोसेस फॉर द ईको-फ्रेन्डली प्रपरेशन ऑव 3, 5- डाइब्रोमो-4 हाइड्रोक्साइबेंजोनाइट्राइल (ब्रोमोक्सिनिल)	सुब्बारयप्पा आदिमूर्ति, गडे रामचन्द्रैया, गिरधर जोशी, राजेन्द्र पाटिल, महेश कुमार रमणीकलाल गांधी, मालमपत्ती सुब्बारेड्डी, प्रत्यूष माइती
82	यूके	ईपी 2408736	एन एम्प्रूव्ड प्रोसेस फॉर द ईको-फ्रेन्डली प्रपरेशन ऑव 3, 5- डाइब्रोमो-4 हाइड्रोक्साइबेंजोनाइट्राइल (ब्रोमोक्सिनिल)	सुब्बारयप्पा आदिमूर्ति, गडे रामचन्द्रैया, गिरधर जोशी, राजेन्द्र पाटिल, महेश कुमार रमणीकलाल गांधी, मालमपत्ती सुब्बारेड्डी, प्रत्यूष माइती
83	यूके	ईपी 1771377	प्रिपरेशन ऑव ए नोबल आयो <mark>डाइजिंग एजेन्ट</mark>	पुष्पितो कुमार घोष, सतीश हरीराय मेहतो, जतिन रमेश चंद्र चूनावाला, मृणालबेन विनोदराय शेठ महेश रमणीकलाल गांधी
84	यूके	2718453	प्रोसेस फॉर इंजिन वर्दी फैटी एसिड मिथाइल ईस्टर (बायोडीजल) फ्रॉम नेचुरली <mark>अकरिंग एण्ड क</mark> ल्चर्ड माइक्रोअल्गल मैट	संध्या चंद्रिका प्रसाद मिश्रा, पुष्पितो कुमार घोष, महेश रमणीकलाल गांधी, सौरिष भट्टाचार्य, सुबर्ना मैती, सुमेश चंद्र उपाध्याय, संजीव कुमार मिश्रा, अनुपमा विजयकुमार

85	यूके	2576522	Zn(II) बेस्ड कोलोरीमंट्रिक सेंसर्स एण्ड प्रोसेस फॉर द प्रिपरेशन देअरऑव	श्रीवास्तव, इमरान पांचा, चेतन पालीवाल, तन्मय घोष, राहुल मौर्या, दीप्ति जैन, प्रबुद्ध गुप्ता, शैलेश कुमार पातिदार, अदिति शाह, अभिषेक साहू, विजय वेकरिया, कीर्तन दवे, हेतल बोसमिया, कृष्णदेवसिंह जाला प्रेसनजीत मेहतो, अमृता घोष, संजीव कुमार मिश्रा, अनुपमा श्रीवास्तव, संध्या मिश्रा, अमिताव दास
86	इजरायल	222445	प्रोडेक्शन ऑव पोर्टेबल वॉटर फ्रॉम हाइली सेलाइन सब-साइल ब्राइन इन सॉल्ट वर्क्स यूजिंग एक्जास्ट वेस्ट हीट फ्रॉम डीजल इंजिन इम्प्लॉयड राउंड द क्लॉक ड्यूरिंग द सॉल्ट मैनुफैक्चरिंग सीजन टु चार्जसॉल्ट पैन्स विद सुसॉइल ब्राइन	पुष्पितो कुमार घोष, गिरीश रजनीकांत देसले, भाविन हसमुख लाल खत्री, राजेशकुमार नारनभाई पटेल, सनतकुमार नटवरलाल पटेल, महेश रामजीभाई गज्जर, नितिन गणेश बोरले
87	इजरायल	214786	एन एम्प्रूव्ड प्रोसेस फॉर द ईको-फ्रेन्डली प्रपरेशन ऑव 3, 5- डाइब्रोमो-4 हाइड्रोक्साइबेंजोनाइट्राइल (ब्रोमोक्साइनिल)	सुब्बारयप्पा आदिमूर्ति, गडे रामचन्द्रिश, गिरधर जोशी, राजेन्द्र पाटिल, महेशकुमार रमणीकलाल गांधी, मालमपत्ती सुब्बारेङ्डी, प्रत्यूष माइती
88	इजरायल	207213	एम्प्रूव्ड प्रोसेस फॉर द प्रपरेशन ऑव आयोडेट- एक्स्चेंज्ड सिंथेटिक हाइड्रोटेलसाइट एज आयोडाइजिंग एजेंट विद जीरो एफ्लुएंट डिस्चार्ज	पुप्पितो कुमार घोष, महेश रमणीकलाल गांधी, सतीश हरिराय मेहता, गङ्डे रामचन्द्रय्या, जतिन रमेशचंद्र चूनावाला, मृणाल विनोद भाई शेठ, गिरिराजसिंह सबलसिंह गोहिल
89	इजरायल	206876	100-500 um साइज स्फेरिकल सोडियम क्लोराइड हैविंग इम्प्रूटड फ्लो एण्ड प्रोसेस ऑव प्रेपरेशन फ्रॉम वाइन देअरऑव	इंद्रजीत मुखोपाध्याय, पुष्पितो कुमार घोष, वडक्के पुथूर मोहनदास
90	इटली	2718453	प्रोसेस फॉर इंजिन वर्दी फेटी एसिड मिथाइल ईस्टर (बायोडीजल) फ्रॉम नेचुरली अकरिंग एण्ड कल्चर्ड माइक्रोअल्गल मैट	संध्या चंद्रिका प्रसाद मिश्रा, पुष्पितो कुमार घोष, महेश रमणीकलाल गांधी, सौरिष भट्टाचार्य, सुबर्ना मैती, सुमेश चंद्र उपाध्याय, संजीव कुमार मिश्रा, अनुपमा विजयकुमार श्रीवास्तव, इमरान पांचा, चेतन पालीवाल, तन्मय घोष, राहुल मौर्या, दीप्ति जैन, प्रबुद्ध गुप्ता, शैलेश कुमार पातिदार, अदिति शाह, अभिषेक साहू, विजय वेकरिया, कीर्तन दवे, हेतल बोसमिया, कृष्णदेवसिंह जाला

91	जापान	5548620	एम्प्रूव्ड प्रोसेस फॉर द प्रपरेशन ऑव आयोडेट-	पुप्पितो कुमार घोष, महेश
91	SHALL	3340020	एक्स्चेंज्ड सिंथेटिक हाइड्रोटेलसाइट एज आयोडाइजिंग एजेंट विद जीरो एफ्लुएंट डिस्चार्ज	रमणीकलाल गांधी, सतीश हरिराय मेहता, गङ्डे रामचन्द्रय्या, जतिन रमेशचंद्र चूनावाला, मृणाल विनोद
				भाई शेठ, गिरिराजसिंह सबलसिंह गोहिल
92	जापान	5642152	इम्प्रूब्ड प्रोसेस फॉर द प्रिपरेशन ऑव एगारोज पॉलीमर फ्रॉम सीवुड एक्स्ट्रेक्टिव	रामावतार मीणा, कमलेशप्रसाद, अरूप कुमार सिद्धांत, पुष्पितो कुमार घोष, गौरव कुमार, किशोर मेहता, भारतकुमार, कालिदास रामावत, मीनाक्षी सुन्दरम गणेशन, भावनाथ झा, अविनाश मिश्रा, महेश रमणीकलाल गांधी, प्रदीप कुमार अग्रवाल, करूप्पनन ईस्वरन
93	जापान	5635992	एन इम्प्रूव्ड प्रोसेस फॉर द प्रिपरेशन ऑव पैरा- नाइट्रोबेंजाइल ब्रोमोड	मनोज कुंजबिहारी अग्रवाल, पुप्पितो कुमार घोष, महेशकुमार रमणीकलाल गांधी, सुमेश चन्द्र उपाध्याय, सुब्बारयप्पा आदिमूर्ति, गड्डे रामचंद्रैया, यू परेश पटोलिया, गिरधर जोशी, हर्षद ब्रह्मभट्ट, राहुल जसवंत राय संघवी
94	जापान	5639199	प्रिपरेशन ऑव हाईली एफिशिएंट हेट्रोजेनस केटालिस्ट फॉर ऐसिमेट्रिक नाइट्रोल्डॉल रिएक्शन	सईद हसन रजी आब्दी, रुखसाना इलयास कुरैशी, नूर-उल-हसन खान, हिर चंद बजाज, विशाल जितेन्द्रभाई मयानी, अरपन कीर्तिभाई शाह
95	जापान	5619867	ए मेथड ऑव प्रिपरेशन ऑव इनेन्टिओसेलेक्टिव कॉम्पोजिट मेम्ब्रेन	कृपाल सिंह, हरी चन्द बजाज, प्रवीण गणेश्राव इंगोले
96	दक्षिण कोरिया	10-1408128	प्रिपरेशन ऑव ऑगॅनिक-इनॉगॅनिक हाइब्रिड काइरल सॉवेंट	सईद हसन रजी आब्दी, रुखसाना इलयास कुरैशी, नूर-उल-हसन खान, राकेश जसरा, विशाल जितेन्द्र भाई मयानी, ए संतोष
97	दक्षिण कोरिया	10-1396812	न्यूट्रिशस, टेस्टी एण्ड अफोर्डेबल ड्रिंक फ्रांम सैप ऑव कप्पाफाइकस अल्वारेजी सी वीड एण्ड इट्स प्रेपरेशन देअरऑव	पुष्पितो कुमार घोष, महेशचंद्र रमेशचंद्र राज्यगुरू, जीनालाल शंभुभाई पटोलिया, पेड्डी वेंट सुब्बाराव, मुकेश त्रिभुवनभाई शाह, सुधाकर तुकाराम जोडापे, मिस शारदा विट्टलदास जोशी, आलमगुरू वेंकट रामी रेड्डी, देवमुरारी छगनलाल विठलदास, सिबदास वंद्योपाध्याय, गणेशचंद्र साहू

	146			
98	मैक्सिको	323444	Zn(II) बेस्ड कोलोरीमेट्रिक सेंसर्स एण्ड प्रोसेस फॉर द प्रिपरेशन देअरऑव	प्रेसनजीत मेहतो, अमृता घोष, संजीव कुमार मिश्रा, अनुपमा श्रीवास्तव, संध्या मिश्रा, अमिताव दास
99	नीदरलैंड्स	2576522	Zn(II) बेस्ड कोलोरीमेट्रिक सेंसर्स एण्ड प्रोसेस फॉर द प्रिपरेशन देअरऑव	प्रेसनजीत मेहतो, अमृता घोष, संजीव कुमार मिश्रा, अनुपमा श्रीवास्तव, संध्या मिश्रा, अमिताव दास
100	नीदरलैंड्स	EP2408736	एन एम्प्रूव्ड प्रोसेस फॉर द ईको-फ्रेन्डली प्रपरेशन ऑव 3, 5- डाइब्रोमो-4 हाइड्रोक्साइबेंजोनाइट्राइल (ब्रोमोक्साइनिल)	सुब्बारयप्पा आदिमूर्ति, गडे रामचन्दैया, गिरधर जोशी, राजेन्द्र पाटिल, महेशकुमार रमणीकलाल गांधी, मालमपत्ती सुब्बारेड्डी, प्रत्यूष माइती
101	फिलिपिन्स	1-2009-500205	न्यूट्रिशस, टेस्टी एण्ड अफोर्डेबल ड्रिंक फ्रांम सैप ऑव कप्पाफाइकस अल्वारेजी सी वीड एण्ड इट्स प्रेपरेशन देअरऑव	पुष्पितो कुमार घोष, महेशचंद्र रमेशचंद्र राज्यगुरू, जीनालाल शंभुभाई पटोलिया, पेड्डी वेंट सुब्बाराव, मुकेश त्रिभुवनभाई शाह, सुधाकर तुकाराम जोडापे, मिस शारदा विहलदास जोशी, आलमगुरू वेंकट रामी रेड्डी, देवमुरारी छगनलाल विठलदास, सिबदास वंद्योपाध्याय, गणेशचंद्र साहू
102	रूस	2528387	नोवल प्रोसेस फॉर द प्रिपरेशन ऑव पॉलीहाइड्रोजाइल्कानोट एंड हाई डेंसिटी शेल ब्रिक्वेट इंटीग्रेटिड विद इम्प्रूब्ड प्रोसेस ऑव प्रोडक्शन ऑव मिथाइल ईस्टर फ्रॉम होल सीड कैप्सूल ऑव जैट्रोफा करकस	पुष्पितो कुमार घोष, संध्या चन्दिका प्रसाद मिश्रा, महेश रमणीक लाल गांधी, सुमेश चन्द्र उपाध्याय, परिमल पॉल, प्रीतपाल सिंह आनन्द, किरीटकुमार मंगलदास पोपट, अनुपमा विजयकुमार श्रीवास्तव, संजीव कुमार मिश्रा, नीलम ओधिया, मरू रमेश डूडाभाई, गंगाधरण दयाल, हर्षद ब्रह्मभट्ट, विनोद बोरिशा, डूंगर रामचौधरी, बाबू राम रेबारी, कृष्णदेव सिंह, सुखदेव सिंह जाला
103	रूस	2541635	इम्प्रूट्ड प्रोसेस फॉर द प्रिपरेशन ऑव एगारोज पॉलीमर फ्रॉम सीवुड एक्स्ट्रेक्टिव	रामावतार मीणा, कमलेशप्रसाद, अरूण कुमार सिद्धांत, पुष्पितों कुमार घोष, गौरव कुमार, किशोर मेहता, भारतकुमार, कालिदास रामावत, मीनाक्षी सुन्दरम गणेशन, भावनाथ झा, अविनाश मिश्रा, महेश रमणीकलाल गांधी, प्रदीपकुमार अग्रवाल, करूप्पनन ईस्वरन

104	सिंगापुर	188540	ए प्रोसेस फॉर द प्रोडक्शन ऑयल बियरिंग	पुष्पितो कुमार घोष, संध्या चन्द्रिका
104	TATING C	100540	कॉलोरेला स्पे. यूटिलाइजिंग बाइ-प्रोडक्ट ऑव जेट्रोफा मिथाइल ईस्टर प्रोडक्शन फ्रॉम होल सीड्स	प्रसाद मिश्रा, महेश रमणीक लाल गांधी, सुमेश चन्द्र उपाध्याय, संजीव कुमार मिश्रा, इमरान पांचा, अनुपमा विजय कुमार श्रीवास्तव, दीप्ति जैन, भूमि शेठिया, सुबर्ना मैती, कृष्णदेव सिंह, सुखदेव सिंह जाला
105	यूएसए	8741628	इंटीग्रेटिड प्रोसेस फॉर द प्रोडक्शन ऑव ऑयल बियरिंग कॉलॉरेला वेरिसबिलीज फॉर लिपिड एक्स्ट्रेक्शन यूटिलाइजिंग बाइ प्रोडक्ट्स ऑव जेट्रोफा मिथाइल ईस्टर (जेएमई) प्रोडक्शन	पुष्पितो कुमार घोष, संध्या चिन्द्रका प्रसाद मिश्रा, महेश रमणीक लाल गांधी, सुमेश चन्द्र उपाध्याय, संजीव कुमार मिश्रा, इमरान पांचा, अनुपमा विजय कुमार श्रीवास्तव, दीप्ति जैन, भूमि शेठिया, सुबर्ना मैती, कृष्णदेव सिंह, सुखदेव सिंह जाला
106	यूएसए	8956836	इंटिग्रेटिड प्रोसेस फॉर द प्रोडक्शन ऑव जेट्रोफा मिथाइल ईस्टर एंड प्रोडक्ट्स	पुष्पितो कुमार घोष, संध्या चन्द्रिका प्रसाद मिश्रा, महेश रमणीक लाल गांधी, सुमेश चन्द्र उपाध्याय, परिमल पॉल, प्रीतपाल सिंह आनन्द, किरीटकुमार मंगलदास पोपट, अनुपमा विजयकुमार श्रीवास्तव, संजीव कुमार मिश्रा, नीलम ओधिया, मरू रमेश डूडाभाई, गंगाधरण दयाल, हर्षद ब्रह्मभट्ट, विनोद बोरिशा, डूंगर रामचौधरी, बाबू राम रेबारी, कृष्णदेव सिंह, सुखदेव सिंह जाला
107	यूएसए	8957239	प्रोसेस फॉर द ईको-फ्रेन्डली प्रपरेशन ऑव 3, 5- डाइब्रोमो-4 हाइड्रोक्साइबेंजोनाइट्राइल	सुब्बारयप्पा आदिमूर्ति, गडे रामचन्द्रिश, गिरधर जोशी, राजेन्द्र पाटिल, महेशकुमार रमणीकलाल गांधी, मालमपत्ती सुब्बारेड्डी, प्रत्यूष माइती
108	यूएसए	8721999	प्रोसेस फॉर साइमलटेनिअस प्रॉडेक्शन ऑव पोटेशियम सल्फेट, अमोनियम सल्फेट, मेग्नेशियम हाइड्रोक्साइड एण्ड/ऑर मेग्नेशियम ऑक्साइड फ्रॉम काइनाइट मिक्स सॉल्ट एण्ड अमोनिया	पुष्पितो कुमार घोष, हरेश महिपतलाल मोदी, जितन रमेशचंद्र चूनावाला, महेशकुमार रमणीकलाल गांधी, हरीचंद्र बजाज, प्रत्यूष मैती, हिमांशु लाभशंकर जोशी, हसीना हाजीभाई देरइया, उपेन्द्र पद्मकसंत सरइया
109	यूएसए	8969056	प्रोसेस फॉर इंटिग्रेटिड प्रॉडेक्शन ऑव ईंथनॉल एण्ड सीवीड सैप फ्रॉम कप्पाफाइक्स अल्वरेजी	कल्पना हरेश मोदी, पुष्पितो कुमार घोष, बरिन्दर साना, जी

110	यूएसए	8770500	फ्री फ्लोइंग 100-500 माइक्रोमीटर साइज	ज्ञानशेखरन, अतिन्द्र दिनकर राय शुक्ला, केईश्वरन, हर्षद रमनमाई ब्रह्मभट्ट, भारतीबेन गुनवंतराय शाह श्रीकुमारन थम्पी, भावनाथ झा इन्द्रजीत मुखोपाध्याय, पुष्पितो
			स्फेरिकल क्रिस्टल्स ऑव <mark>कॉमन सॉल्ट ए</mark> ण्ड प्रोसेस ऑव प्रेपरेशन देयरऑव	कुमार घोष, बडक्के पुथूर मोहनदास
111	दक्षिण अफ्रीका	2013/08696	प्रोसेस फॉर इंजिन वर्दी फैटी एसिड मिथाइल ईस्टर (बायोडीजल) फ्रॉम नेचुरली अकरिंग एण्ड कल्चर्ड माइक्रोअल्गल मैट	संध्या चंद्रिका प्रसाद मिश्रा, पुष्पितो कुमार घोष, महेश रमणीकलाल गांधी, सौरिष भट्टाचार्य, सुबर्ना मैती, सुमेस चंद्र उपाध्याय, संजीव कुमार मिश्रा, अनुपमा विजयकुमार श्रीवास्तव, इमरान पांचा, चेतन पालीवाल, तन्मय घोष, राहुल मौर्या, दीप्ति जैन, प्रबुद्ध गुप्ता, शैलेश कुमार पातिदार, अदिति शाह, अभिषेक साहू, विजय वेकरिया, कीर्तन दवे, हेतल बोसमिया, कृष्णदेवसिंह जाला
सीएसआई	आर-आईजीआईबी			
112	जर्मनी	1831114	ए बायोटेक्नोलॉजिकल प्रोसेस फॉर न्यूट्रालाइजेशन ऑव एल्कलाइन वेबरेज इन्डस्ट्रियल वेस्ट वॉटर	रीता कुमार, अनिल कुमार
113	ईपीओ	1831114	ए बायोटेक्नोलॉजिकल प्रोसेस फॉर न्यूट्रालाइजेशन ऑव एल्कलाइन वेबरेज इन्डस्ट्रियल वेस्ट वॉटर	रीता कुमार, अनिल कुमार
114	फ्रांस	1831114	ए बायोटेक्नोलॉजिकल प्रोसेस फॉर न्यूट्रालाइजेशन ऑव एल्कलाइन वेबरेज इन्डस्ट्रियल वेस्ट वॉटर	रीता कुमार, अनिल कुमार
115	यूके	1831114	ए बायोटेक्नोलॉजिकल प्रोसेस फॉर न्यूट्रालाइजेशन ऑव एल्कलाइन वेबरेज इन्डस्ट्रियल वेस्ट वॉटर	रीता कुमार, अनिल कुमार
116	यूएसए	8883730	ह्यूमन लंग सर्फेक्टेंट प्रोटीन, SP-D, मॉड्यूलेट्स इओसिनोफिल एक्टिवेशन एण्ड सर्वाइवल एण्ड एन्हांसेस फागोएसाइटोसिस ऑव एपॉप्टॉटिक बोसिनोफिल्स	लक्षणा महाजन, पी ऊषा सर्मा, तरुणा मदन
सीएसआई	आर-आईएचबीटी			
117	चीन	जैडएल 200680054556.2	सुपरऑक्साइड डिस्म्यूटेज जीन फ्रॉम पोटेंटिला एट्रोसनगुइनिआ एण्ड इट्स एक्स्प्रेशन इन हेट्रोग्गस सिस्टम	प्रदीप कुमार भारद्वाज , रश्मिता साहू, संजय कुमार, परमवीर सिंह आहूजा
118	यूएसए	8916723	सब्स्टिट्यूटेड साइक्लोहेसन-1, 3-डाऑन कम्पाडंड्स, प्रोसेस फॉर प्रेपरेशन देयरऑव एप्लीकेशन्स	प्रलय दास, धर्मिन्दर शर्मा, बिक्रम सिंह

119	यूएसए	8716532	वन पॉट मल्टीकम्पोनेंट सिंथेसिस ऑफ सम नोवल	अभिषेक शर्मा, अरूण कुमार सिन्हा,
			हाइड्रॉक्सी स्टिलबेज डेरीवेटिव्स विद अल्फा,	राकेश कुमार,
			बीटा-कार्बोनाइल कॉन्जुगेशन अन्डर माइक्रोवेव इरेडिएशन	नैना शर्मा
120	यूएसए	8779200	माइक्रोवेव इन्ड्यूस्ड सिंगल स्टेप ग्रीन सिंथेसिस	अरूण कुमार सिन्हा, अभिषेक शर्मा,
			ऑव सम नोवल 2-एलाइल एल्डिहाइड्स एण्ड	राकेश कुमार,
			देयर एनलॉग्स	नैना शर्मा
			माइक्रोवेव इन्ड्यूरुड सिंगल स्टेप ग्रीन सिंथेसिस	अरूण कुमार सिन्हा, अभिषेक शर्मा,
121	यूएसए	8981152	ऑव सम नोवल 2-एलाइल एल्डिहाइड्स एण्ड	राकेश कुमार,
			देयर एनलॉग्स	नैना शर्मा
सीएसआई३	 आर-आईआईसीबी			
122	अफ्रीकन रीजनल	एपी2884	डवलपमेंट ऑव ए बाइफंक्शनल मॉलिक्यूल 5-	प्रदीप कुमार दास, सुचंद्र गोस्वामी,
	इंटरेलचुरल प्रोपट्री		हाइड्रॉक्सी-2 फेनाइल-7 (6-पिपराइडीन-1-yl-	अन्नलक्ष्मी चिन्नइआ, जेनास्वामी
	आर्गेनाइजेशन		हेक्सीलॉक्सी)-4h-बेंजपाइरन-4-वन एज एन्टी	मधुसुदन राव, कट्रागैङ्डा सुरेश
			हेलीकोबेक्टर पाइलोरी एंड गैस्ट्रिक एंटीसेकेटरी	बाबू
			एजेंट	·
123	यूएसए	8901317	ट्रिप्टेमाइन डेरिवेटिब्स, देयर प्रेपरेशन एण्ड देयर	उदय बंद्योपाध्याय, चिन्मय पाल,
			यूज इन गेस्ट्रोपैथी	सामिक बिन्दू, ससांत सेखर
				अधिकारी
124	यूएसए	8729034	फार्मास्युटिकल कॉम्पोजिशन हैविंग विरूसाइडल	सईद कबीर हेराम्बा नन्द रे, बिकाश
			एण्ड स्पर्मिसाइडल एक्टिविटी	सी पाल, देबाशीस मित्रा
125	यूएसए	8969384	फ्लेनोनॉयड कम्पाउण्ड्स एण्ड प्रोसेस फॉर	प्रदीप कुमार दास, सुचंद्र गोस्वामी,
			प्रेपरेशन देअरऑव	अन्नलक्ष्मी चिन्नइआ, जेनास्वामी
				मधुसुदन राव, कट्रागैड्डा सुरेश
				बाबू
सीएसआई	ा आर-आईआईसीटी	1		
126	कनाडा	2645350	सी-2 डिफ्लुओरो पाइरोल [2, 1-c][1, 4]	कमाल अहमद, राजशेखर रेड्डी
			बेंजोडाइजेपीन डिमर्स	देपतला, राजेन्द्र
127	कनाडा	2633020	प्रोसेस फॉर द प्रोडक्शन ऑव ब्रासिलिक	कमाल अहमद, शीलू गुरेला, वसन्त
			एसिड फ्रॉम ट्राइडिकेन बाई माइक्रोबिअल	राव नितिन फडणवीस
			ऑक्सीडेशन	
128	कनाडा	2424363	ए नोवल क्रोमेटोग्राफिक फिंगर प्रिंगिंग ऑव	विजय कुमार डडाला, कोंडापुरम
			हर्बल मेडिसिन्स एण्ड फॉर्मूलेशन	विजय राघवन
129	चीन	जैडएल	सिंथेसिस ऑव हेक्सा <mark>डेसाइल cis-9-</mark>	बेथला लक्ष्मी अनु प्रभावती देवी,
			टेट्राडिसेनोएट एण्ड हेक्सा <mark>डिसाइल cis-1</mark> 0-	
		201080011046.3	ट्रांक्सगारेट देन्द्र ध्वसाविसाईस CIS-10-	कटकम नडपी गंगाधर, कुनकुमा
		201080011046.3	टेट्राडिसेनोएट एण्ड देयर इवेल्यूएशन फॉर एंटी	विजयलक्ष्मी, सिस्तला रामकृष्ण,
		201080011046.3	**	5 5
		201080011046.3	टेट्राडिसेनोएट एण्ड देयर इवेल्यूएशन फॉर एंटी	विजयलक्ष्मी, सिस्तला रामकृष्ण,
		201080011046.3	टेट्राडिसेनोएट एण्ड देयर इवेल्यूएशन फॉर एंटी	विजयलक्ष्मी, सिस्तला रामकृष्ण, कुंचा मधुसूदन, प्रकाश वमनराव
130	चीन	201080011046.3 ਯੈਂडएल	टेट्राडिसेनोएट एण्ड देयर इवेल्यूएशन फॉर एंटी	विजयलक्ष्मी, सिस्तला रामकृष्ण, कुंचा मधुसूदन, प्रकाश वमनराव दीवान, राचापुडी बदरी नारायण
130	चीन		टेट्राडिसेनोएट एण्ड देयर इवेल्यूएशन फॉर एंटी अर्थराइटिस प्रॉपर्टीजइन रेट्स	विजयलक्ष्मी, सिस्तला रामकृष्ण, कुंचा मधुसूदन, प्रकाश वमनराव दीवान, राचापुडी बदरी नारायण प्रसाद

			लुब्रीकेंट परफॉर्मेंस प्रॉपर्टीज एण्ड टु मेथड्स फॉर इट्स प्रेपरेशन	भास्कर, कृष्णासामी सर्वानन राचापुडी बदरी नारायण प्रसाद
131	जर्मनी	2556072	2-फेनाइल बेंजोथाइजोल लिंक्ड इमीडाजोल कम्पाउंड्स एज पोटेंशियल एंटीकैंसर एजेंट्स	कमाल अहमद, रत्ना रेड्डी चल्ला प्रभाकर सिंगराबोइना
132	जर्मनी	2358719	सिंथेसिस एंड इन वीट्रो एंटीकैंसर एक्टिविटी ऑव न्यू पाइरोलो [2, 1-c][1, 4]बेंजोडाइजपाइन डेरीवेटिव्स विद	कमाल अहमद, श्रीकांत कोकेन्ड प्रवीण कुमार पोगुला, बालकृष्ण गो
100	-62	0-0004	डिथिओकार्बामेट साइड चेंस एंड प्रोसेस फॉर द प्रेपरेशन देअरऑव	
133	जर्मनी	2523941	केलकोन लिंक्ड इमिडाजोलोनेस एज पोटेंशियल एंटीकैंसर एजेंट्स एण्ड प्रोसेस फॉर द प्रेपरेशन देअरऑव	कमाल अहमद, रामकृष्ण गडुपुर्ड बालकृष्ण गोरे, राजू पैडाकुल विश्वनाथ अरूत्ला, बालकृष्ण मोव्
134	जर्मनी	2488533	इमिडाजोथिएजोल-केलकोन हाइब्रिड एज पोटेंशियल एंटीकैंसर एजेंट्स एंड प्रोसेस फॉर द प्रेपरेशन देअरऑव	कमाल अहमद, दस्तागिरी दुदेकुल सुरेन्द्रनधा रेड्डी, जोन्नाला, विज भारती इर्ला
135	जर्मनी	2638047	सब्स्टीट्यूटेड 4- एक्रिलेमिडोपोडोफिलॉटॉक्सीन कांजेनर्स एज एंटीट्यूमर एंटीबायोटिक्स एंड प्रोसेस फॉर द प्रेपरेशन देअरऑव	कमाल अहमद, सुरेश, पेडाकुल अश्विनी कुमार बनाला, मल्लारेड्ड अदला वेंकटरेड्डी पापागरी
136	जर्मनी	2536726	डायरिल ईथर लिंक्ड पाइरोलो [2, 1-c][1, 4]बेंजोडाइजेपीन हाइब्रिड्स एंड प्रोसेस फॉर द प्रेपरेशन देयरऑव	कमाल अहमद, विश्वनाथ अरूत्ल जयन्ती नाग श्रीराम चन्द्र मूर्रि विजय भारती एर्ला, रामकृष् गदुपुडी सुल्तान फरहीन
137	ईपीओ	2488533	इमिडाजोथिएजोल-केलकोन हाइब्रिड एज पोटेंशियल एंटीकैंसर एजेंट्स एंड प्रोसेस फॉर द प्रेपरेशन देयरऑव	कमाल अहमद, दस्तागिरी दुदेकुल सुरेन्द्रनधा रेड्डी जोन्नाला, विज भारती इर्ला
138	ईपीओ	2638047	सब्स्टीट्यूटेड 4- एक्रिलेमिडोपोडोफिलॉटॉक्सीन कांजेनर्स एज एंटीट्यूमर एंटीबायोटिक्स एंड प्रोसेस फॉर द प्रेपरेशन देअरऑव	कमाल अहमद, सुरेश पेडाकुल अश्विनी कुमार बनाला, मल्लारेड्र अदला वेंकटरेड्डी पापागरी
139	ईपीओ	2061514	ग्लूकोकॉर्टिकोइड रिसेप्टर टार्गेटिंग फॉर्मूलेशंस फॉर डिलीवरिंग जीन्स टु कैंसर सैल्स	अमरनाथ मुखर्जी, राजकुमार बनर
140	ईपीओ	2536726	डायरिल ईथर लिंक्ड पाइरोलो [2, 1-c][1, 4]बेंजोडाइजेपीन हाइब्रिड्स एंड प्रोसेस फॉर द प्रेपरेशन देयरऑव	कमाल अहमद, विश्वनाथ अरूत्ल जयन्ती नाग श्रीराम चन्द्र मूर्वि विजय भारती एर्ला, रामकृष् गदुपुडी सुल्तान फरहीन
141	ईपीओ	2358719	सिंथेसिस एंड इन वीट्रो एंटीकैंसर एक्टिविटी ऑव न्यू पाइरोलो [2, 1-c][1, 4]बेंजोडाइजपाइन डेरीवेटिव्स विद डिथिओकार्बामेट साइड चेंस एंड प्रोसेस फॉर द प्रेपरेशन देअरऑव	कमाल अहमद, श्रीकांत कोकेन्ड प्रवीण कुमार पोगुला, बालकृष्ण गे

	4-2-1	0.55050	2014-13	
142	ईपीओ	2556072	2-फेनाइल बेंजोथाइजोल लिंक्ड इमीडाजोल	कमाल अहमद, रत्ना रेड्डी चल्ला,
			कम्पाउंड्स एज पोटेंशिय <mark>ल एंटीकैंसर एजेंट्</mark> स	प्रभाकर सिंगराबोइना
143	ईपीओ	2523941	केलकोन लिंक्ड इमिडाजोलन्स एज पोटेंशियल	कमाल अहमद, रामकृष्ण गडुपडी,
			एंटीकैंसर एजेंट्स एण्ड प्रोसेस फॉर द प्रेपरेशन	बालकृष्ण गोरे, राजू पैडाकुला,
			देअरऑव	विश्वनाथ अरूत्ला, बालकृष्ण मोकू
144	फ्रांस	2061514	ग्लूकोकॉर्टिकोइड रिसेप्टर टार्गेटिंग फॉर्मूलेशंस	अमरनाथ मुखर्जी, राजकुमार बनर्जी
			फॉर डिलीवरिंग जीन्स टु कैंसर सैल्स	
145	फ्रांस	2358719	सिंथेसिस एंड इन वीट्रो एंटीकैंसर एक्टिविटी	कमाल अहमद, श्रीकांत कोकेन्डा,
			ऑव न्यू पाइरोलो [2, 1-c][1, 4] बेंजोडाइजपाइन डेरीवेटिव्स विद	प्रवीण कुमार पोगुला, बालकृष्ण गोरे
			डिथिओकार्बामेट साइड चेंस एंड प्रोसेस फॉर	
			द प्रेपरेशन देयरऑव	
146	फ्रांस	2638047	सब्स्टीट्यूटेड 4-	कमाल अहमद, सुरेश पेडाकुला
			एक्रिलेमिडोपोडोफिलॉटॉक्सीन कांजेनर्स एज	अश्विनी कुमार बनाला, मल्लारेड्डी
			एंटीट्यूमर एंटीबायोटिक्स प्रोसेस फॉर द	अदला वेंकटरेड्डी पापागरी
			प्रेपरेशन देयरऑव	
147	फ्रांस	2536726	डायरिल ईथर लिंक्ड पाइरोलो [2, 1-c][1,	कमाल अहमद, विश्वनाथ अरूत्ला,
			4]बेंजोडाइजेपीन हाइब्रिड्स एंड प्रोसेस फॉर द	जयन्ती नाग श्रीराम चन्द्र मूर्ति,
			प्रेपरेशन देयरऑव	विजय भारती एर्ला, गदुपुडी
				रामकृष्ण, फरहीन सुल्तान
148	यूके	2523941	केलकोन लिंक्ड इमिडाजोलन्स एज पोटेंशियल	कमाल अहमद, गडुपडी रामकृष्ण,
	8.	2020011	एंटीकैंसर एजेंट्स एण्ड प्रोसेस फॉर द प्रेपरेशन	गोरे बालकृष्ण, पैडाकुला राजू,
			देयरऑव	अरूत्ला विश्वनाथ, मोकू बालकृष्ण
4.40		0.400500		**
149	यूके	2488533	इमिडाजोथिएजोल-केलकोन हाइब्रिड एज	कमाल अहमद, दस्तागिरी दुदेकुला,
			पोटेंशियल एंटीकैंसर एजेंट्स एंड प्रोसेस फॉर	जोन्नाला सुरेन्द्रनधा रेड्डी, इर्ला
			द प्रेपरेशन देयरऑव	विजय भारती
150	यूके	2536726	डायरिल ईथर लिंक्ड पाइरोलो [2, 1-c][1,	कमाल अहमद, विश्वनाथ अरूत्ला,
			4]बेंजोडाइजेपीन हाइब्रिड्स एंड प्रोसेस फॉर द	जयन्ती नाग श्रीराम चन्द्र मूर्ति,
			प्रेपरेशन देयरऑव	विजय भारती एर्ला, गदुपुडी
				रामकृष्ण, फरहीन सुल्तान
151	यूके	2638047	सब्स्टीट्यूटेड 4-	कमाल अहमद, सुरेश पेडाकुला,
			एक्रिलेमिडोपोडोफिलॉटॉक्सीन कांजेनर्स एज	अश्विनी कुमार बनाला, मल्लारेड्डी
			एंटीट्यूमर एंटीबायोटिक्स प्रोसेस फॉर द	अदला वेंकटरेड्डी पापागेरी
			प्रेपरेशन देयरऑव	
152	गर्क	2259710	सिंथेसिस एंड इन वीट्रो एंटीकैंसर एक्टिविटी	कमाल अहमद, श्रीकांत कोकेन्डा,
152	यूके	2358719		
			ऑव न्यू पाइरोलो [2, 1-c][1, 4]	प्रवीण कुमार पोगुला, बालकृष्ण गोरे
			बेंजोडाइजपाइन डेरीवेटिव्स विद	
			डिथिओकार्बानेंट साइड चेंस एंड प्रोसेस फॉर	
			द प्रेपरेशन देअरऑव	
153	यूके	2556072	2-फेनाइल बेंजोथाइजोल लिंक्ड इमीडाजोल	कमाल अहमद, चल्ला रत्ना रेड्डी,
			कम्पाउंड्स एज पोटेंशियल एंटीकैंसर एजेंट्स	सिंगराबोइना प्रभाकर

154	जापान	5631732	ए प्रोसेस फॉर द प्रिपरेशन ऑव न्यू डाइजोनाफ्थोक्यूइनोनेसल्फोनिक एसिड बिस्फेनॉल डेरिवेटिव्स एण्ड देयर यूज इन फोटो	वुम्मादि वेंकट रेड्डी, वैद्य जयतीर्थ राव, मन्नेपल्ली लक्ष्मीकान्तम, सुनकारा शकुन्तला माधवेन्द्र,
			लिथोग्राफिक सब माइक्रोन पैटर्निंग	वीरेन्द्र कुमार द्विवेदी
155	जापान	5657395	क्विनाजोलीन लिंक्ड पाइरोलो [2, 1-c][1, 4]बेंजोडिएजेपीन हाइब्रिड्स एज पोटेंशियल एंटीकैंसर एजेंट्स एण्ड प्रोसेस फॉर द प्रेपरेशन देअरऑव	अहमद कमाल, राजेन्द्र प्रसाद भण्डारी, मल्ला रेड्डी अदला
156	यूएसए	8809321	डायरिल ईथर लिंक्ड पाइरोलो [2, 1-c][1, 4]बेंजोडाइजेपीन हाइब्रिड्स एंड प्रोसेस फॉर द प्रेपरेशन देअरऑव	कमाल अहमद, विश्वनाथ अरूत्ला, जयन्ती नाग श्रीराम चन्द्र मूर्ति, विजय भारती एर्ला, रामकृष्ण गदुपडी सुल्तान फरहीन
157	यूएसए	8927538	कार्बाजोल लिंक्ड पाइरोलो [2, 1-c][1, 4]बेंजोडिएजेपीन हाइब्रिड्स एज पोटेशियल एंटीकैंसर एजेंट्स एण्ड प्रोसेस फॉर द प्रेपरेशन देयरऑव	कमाल अहमद, राजेश वी.सी.आर.एन.सी. शेट्टी, के श्रीनिवास रेड्डी, अदला मल्ला रेड्डी
158	यूएसए	8883809	आइसोक्साजोल/आइसोक्साजोलीन/कॉम्ब्रेटा स्टेटिन लिंक्ड डिहाइड्रोक्विनाजोलीनोन हाइब्रिड्स एज पोटेंशियल एंटीकैंसर एजेंट्स एण्ड प्रोसेस फॉर द प्रेपरेशन देअरऑव	कमाल अहमद, एर्ला विजय भारती, जोन्नाला सुरेन्द्रनाथ रेड्डी, दुडेकुला दस्तागिरी, अरुत्ला विश्वनाथ
159	यूएसए	8759339	पाइरोलो[2, 1-c][1, 4] नेप्थोडाइजेपीन लिंक्ड पिपरेजाइन कम्पाउंड्स एण्ड ए प्रोसेस फॉर द प्रेपरेशन देअरऑव	कमाल अहमद, जयन्ती नाग श्री राम चंद्र मूर्ति, अरुत्ला विश्वनाथ
160	यूएसए	8921552	बेंजोथिआजोल हाइब्रिड्स यूजफुज एज एंटीकैंसर एजेंट्स एण्ड प्रोसेस फॉर द प्रेपरेशन देयरऑव	कमाल अहमद, अदलामल्ला रेड्डी, पैडाकुला सुरेश, राजेश वेंकट चेन्ना राम नरसिम्हा चेन्नम शेट्टी, हरीश चंद्र पाल, अजीत कुमार सक्सेना
161	यूएसए	8835421	बेंजिमिडाजोल लिंक्ड पाइरोलो [2, 1-c][1, 4]बेंजोडाइजेपाइन हाइब्रिड्स एज पोटेंशियल एंटीकैंसर एजेंट्स एण्ड प्रोसेस फॉर द प्रेपरेशन देअरऑव	अहमद कमाल, पोगुला प्रवीण कुमार, बोब्बुरी नाग शेषाद्रि, काकोंडा श्रीकांत
162	यूएसए	8742150	कास्टर ऑइल फैटी एसिड बेस्ड एस्टोलाइड ईस्टर्स एण्ड देयर डेरिवेटिव्स एज पोटेंशियल लुब्रीकेंट बेस स्टॉक्स	सत्य भास्कर पोटुला, वेंकट पद्मजा कोर्लीपारा, वेंकट सूर्या कोप्पेश्वर राव भामिदीपति श्रवणन कृष्णास्वामी बदरी नारायण प्रसाद रचापुडी
163	यूएसए	8703824	कैटियोनिक एम्फाइल्स विद मेनोस – मिमिकिंग हैड-ग्रुप्स एण्ड ए प्रोसेस फॉर द प्रेपरेशन देअरऑव	रमिशेट्टी श्रीनिवास, अरूप गेरू, सचिन बी. अगावने, अरबिन्द चौधरी
164	यूएसए	8691811	कुक्विनाजोलीन लिंक्ड पाइरोलो [2, 1-c][1, 4]बेंजोडिएजेपीन हाइब्रिड्स एज पोटेंशियल	कमाल अहमद, एर्ला वी भारती, दुडेकुला दस्तागिरी, जोन्नाला एस. रेड्डी, अरुत्ला विश्वनाथ

	1			
			एंटीकैंसर एजेंट्स एण्ड प्रोसेस फॉर द प्रेपरेशन देअरऑव	
165	यूएसए	8722665	सिन्नामिडो पाइरोलो [2, 1-c][1, 4]बेंजोडाइजेपीन्स एज पोटेंशियल एंटीकैंसर एजेंट्स एण्ड प्रोसेस फॉर द प्रेपरेशन देअरऑव	कमाल अहमद, बालकृष्ण गौर, रामकृष्ण गडुपुडी, श्रीकांत कोक्कोंडा, राजेन्दर
166	यूएसए	8889874	इमिडाजोलोन केलकोन डेरिवेरिव्स एज पोटेंशियल एंटीकैंसर एजेंट एण्ड प्रोसेस फॉर द प्रेपरेशन देअरऑव	कमाल अहमद, गडुपुडी रामकृष्ण गडुपुडी, बालकृष्ण गोरे, , पैडाकुला राजु, अरुत्ला विश्वनाथ, मोकू बालकृष्ण
167	यूएसए	8927560	4-Aza-2, 3-डाइडिहाड्रोपोडोफिलोटॉक्सिन कम्पाउंड्स एवं प्रोसेस फॉर दे प्रेपरेशन देअरऑव	कमाल अहमद, सुरेश पैडाकुला, अश्विनी कुमार बनाला, माल्लारेड्डी अड्ला, पापागेरी वेंकट रेड्डी, जाकी रशीद तम्बोली
168	यूएसए	8916711	इमिडाजोथिएजो-केलकोन डेरिवेरिव्स एज पोटेंशियल एंटीकैंसर एजेंट एण्ड प्रोसेस फॉर द प्रेपरेशन देअरऑव	कमाल अहमद, डुडेकुला दस्तागिरी, जोन्नाला सुरेन्द्रनधा रेड्डी, एर्ला विजय भारती
169	यूएसए	8933248	3-सब्स्टीटुटेड-3-हाइड्रोक्सी ऑक्सिन्डोल डेरिवेटिव्स एण्ड प्रोसेस फॉर द प्रेपरेशन देअरऑव	मण्डापति मोहन राव, पार्वधानेनी साई प्रतिमा
170	यूएसए	8816109	प्रोसेस फॉर प्रेपरेशन ऑव हैक्साडेसिल cis-9- टेट्राडेसेनोएट एण्डहैक्साडेसिल cis-10- टेट्राडेसेनोएट	पार्वती देवी, कटकम नडपी गंगाधर कुनकुमा विजयलक्ष्मःी, सिस्तला रामकृष्ण, कुंचा मधुसूदन प्रकाश वमनराव दीवान, रचापुडी बदरी नारायण प्रसाद
सीएसआईः	्र आर-आईआईसीर्ट	ो+ आईआईआईएम		
171	जर्मनी	2566863	कुक्विनोलाइलिपपरेजिनो सब्स्टीट्यूटेड थिओलेक्टोन कम्पाउंड्स एण्ड प्रोसेस फॉर द प्रेपरेशन देअरऑव	कमाल अहमद, शैक अजीजा, अहमद अली शैक, एम शाहिद मलिक, इंशाद अली खान, शेख तासदक अब्दुल्ला, संदीप शर्मा, अंशु बेउलाह राम
172	ईपीओ	2566863	कुक्विनोलाइलिपपरेजिनो सब्स्टीट्यूटेड थिओलेक्टोन कम्पाउंड्स एण्ड प्रोसेस फॉर द प्रेपरेशन देअरऑव	कमाल अहमद, शैक अजीजा, अहमद अली शैक, एम शाहिद मलिक, इंशाद अली खान, शेख तासदक अब्दुल्ला, संदीप शर्मा, अंशु बेउलाह राम
173	फ्रांस	2566863	कुक्विनोलाइलिपपरेजिनो सब्स्टीट्यूटेड थिओलेक्टोन कम्पाउंड्स एण्ड प्रोसेस फॉर द प्रेपरेशन देअरऑव	कमाल अहमद, शैक अजीजा, अहमद अली शैक, एम शाहिद मलिक, इंशाद अली खान, शेख तासदक अब्दुल्ला, संदीप शर्मा, अंशु बेउलाह राम

			2014-13	
174	यूके	2566863	कुइनोलाइलपिपरेजिनो सब्स्टीट्यूटेड थिओलेक्टोन कम्पाउंड्स एण्ड प्रोसेस फॉर द प्रेपरेशन देअरऑव	कमाल अहमद, शेक अजीत, अहमद अली शेक, एम शाहिद मलिक, इंशाद अली खान, शेख तसदूक अब्दुल्लाह, संदीप शर्मा, अंशु बेउल्लाह राम
सीएसआईअ	गर-आईआईआईएम			
175	आस्ट्रेलिया	2009318789	ए प्रोसेस फॉर द प्रेपरेशन ऑव ऑप्टिकली एक्टिव एन-बेन्जाइल-3-हाइड्रॉक्सिपाइरोलिडींस	सुभाष चंद्र तनेजा, मुश्ताक अहमद आगा, बृजेश कुमार, विजय कुमार सेठी, समर सिंह अंदोत्रा, गुलाम नबी काजी
176	जर्मनी	2265620	स्पाइरो डेरिवेटिव्स ऑव पार्थेनिन एज नोवल एंटीकैंसर एजेंट्स; डिजाइन एण्ड सिंथेसिस	महाबल राव सम्पत कुमार हालमुथुर, अजित कुमार सक्सेना, सुभाष चंद्र तनेजा, शशांक कुमार सिंह, विजय कुमार सेठी, नवीन अहमद काजी, संघपाल दामोदर सावंत, महेन्दर रेड्डी डोमा, आबिद हुसैन बन्दे, मोनिका वर्मा, गुलाम नबी काजी
177	ईपीओ	2265620	स्पाइरो डेरिवेटिव्स ऑव पार्थेनिन एज नोवल एंटीकैंसर एजेंट्स; डिजाइन एण्ड सिंथेसिस	महाबल राव सम्पत कुमार हालमुथुर, अजित कुमार सक्सेना, सुभाष चंद्र तनेजा, शशांक कुमार सिंह, विजय कुमार सेठी, नवीन अहमद काजी, संघपाल दामोदर सावंत, महेन्दर रेड्डी डोमा, आबिद हुसैन बन्दे, मोनिका वर्मा, गुलाम नबी काजी
178	फ्रांस	2265620	स्पाइरो डेरिवेटिव्स ऑव पार्थेनिन एज नोवल एंटीकैंसर एजेंट्स; डिजाइन एण्ड सिंथेसिस	महाबल राव सम्पत कुमार हालमुथुर, अजित कुमार सक्सेना, सुभाष चंद्र तनेजा, शशांक कुमार सिंह, विजय कुमार सेठी, नवीन अहमद काजी, संघपाल दामोदर सावंत, महेन्दर रेड्डी डोमा, आबिद हुसैन बन्दे, मोनिका वर्मा, गुलाम नबी काजी
179	यूके	2265620	स्पाइरो डेरिवेटिव्स ऑव पार्थेनिन एज नोवल एंटीकैंसर एजेंट्स; डिजाइन एण्ड सिंथेसिस	महाबल राव सम्पत कुमार हालमुथुर, अजित कुमार सक्सेना, सुभाष चंद्र तनेजा, शशांक कुमार सिंह, विजय कुमार सेठी, नवीन अहमद काजी, संघपाल दामोदर सावंत, महेन्दर रेड्डी डोमा, आबिद हुसैन बन्दे, मोनिका वर्मा, गुलाम नबी काजी

गेएसआई३	गर-आईआईपी			
180	जर्मनी	10115892	प्रोसेस फॉर द प्रेपरेशन ऑव ए नोवल कैटालिस्ट यूजफुल फॉर स्वीटिनंग ऑव साउर पेट्रोलियम डिस्टिलेट्स	बृजबहादुर अग्रवाल, सोमनाथ पुरें गौतम दास, बीर सेन, भगवत प्रसाद बालोडी, सुनील कुमा अनिल कुमार पुष्पा गुप्ता, ज प्रकाश, ओंकार सिंह त्यार्ग तुरूगा सुन्दर राम प्रसाद राव गुरप्रसाद राय
181	जापान	5535482	ए कॉम्पोजीशन एण्ड प्रोसेस फॉर हाइड्रॉलिक फ्लूइड	अरूण कुमार सिंह, नवल किशे पाण्डे, अशोक कुमार गुप्ता
182	मलेशिया	एमवाई-153297- ए	प्रोसेस फॉर प्रेपेरिंग फैटीएसिड एल्काइल ईस्टर्स सूटेबल फॉर यूज एज बायोडीजल	अशोक कुमार गुप्ता, अजय कुम भटनागर, सविता कौल
183	यूएसए	8697916	प्रोसेस फॉर द प्रेपरेशन ऑफ CuCr ऑक्साइड्स रिएक्शन्स	राजाराम बल, विपुल सरका शुभ्रा आचार्य शंख, शिल्पी घो चंद्रशेखर पेंडेम, जगदीश कुमार
184	यूएसए	8722573	सल्फोनेटेड कार्बन सिलिका कॉम्पोजिट मैटिरियल एण्ड ए प्रोसेस फॉर प्रेपरेशन देअरऑव	नागभाटला विश्वानाथम, देवव नन्दन
185	यूएसए	8772552	प्रोसेस फॉर द सेलेक्टिव हाइड्रॉक्सीलेशन ऑव बेन्जीन विद मॉलिकुलर ऑक्सीजन	राजाराम बल, विपुल सरका शुभ्रा आचार्य शंख, शिल्पी घो चंद्रशेखर पेंडेम
186	यूएसए	8969268	प्रोसेस फॉर द प्रेपरेशन ऑव मल्टीफंक्शनल एडिटिव फॉर एक्वीयस लूब्रिकेंट्स	आलोक कुमार चटर्जी, मांगे रा त्यागी, सिद्धार्थ शंकर रे, इ शेखर, अंकुशी बंसल
187	यूएसए	8722952	प्रोसेस फॉर प्रोडक्शन ऑव बेंजीन लीन गैसोलीन बाइ रिकवरी ऑव हाई प्योरिटी बेंजीन फ्रॉम अनप्रोसेस्ड क्रेक्ड गैसोलीन फ्रेक्शन कन्टेनिंग आर्गेनिक परोक्साइड्स	मधुकर ओंकार नाथ गर्ग, श्रीकां मधुसूदन नानोटी, भगत रा नोटियाल, सुनील कुमा प्रसेनजीत घोष, निशा, पूर् यादव, जगदीश कुमार, मनी तिवारी, राव राजा गोपाल मेक नागरिथनम शेनबगा मूर्ति
188	यूएसए	8772560	मॉडिफाइड जियोलाइट कैटालिस्ट यूजफुल फॉर द कन्वर्जन ऑव पैराफिंस, ओलेफिंस एण्ड एरोमेटिक्स इन ए मिक्स्ड फीडस्टॉक इनटु आइसोपैराफिंस एण्ड ए प्रोसेस देअरऑव	विश्वनाथम नागभाटला, रविरा काम्बले, अमित शर्मा, जगदी कुमार, भगवान सिंह नेगं मुरलीधर गुडीमेल्ला, मधुव ओंकार नाथ गर्ग
गिएसआई3	गर-आईएमएमटी			
189	यूएसए	8728195	ग्रीन प्रोसेस फॉर द प्रेपरेशन ऑव डायरेक्ट रिड्यूस्र आयरन (DRI)	ड भोई मिश्रा, बारदा कान्त राजा किशोर, परमगुर सिद्धार्थ कुमार प्रधा पार्थसारथी मुखर्जी, साम्बिर साहू, स्निग्धा प्रियदर्शिन

				प्रियंका राजपूत, सुबीर कुमार दास
190	यूएसए	8748658	फस्ट आइसोलेशन मेथॉड फॉर द नेचुरल स्केफोल्ड अर्सोलिक एसिड फ्रॉम डायोस्पाइसेस मेलनॉक्सीलोन	वेंकट मल्लवधानी उप्पुलुरी, बनिका पटनायक
191	यूएसए	8709150	कम्पोजीशन फॉर बिल्डिंग मेटेरियल्स एण्ड ए प्रोसेस फॉर द प्रेपरेशन देअरऑव	बंशीधर नायक, बारदा कान्ता मिश्रा, स्नेहाशीष बहेरा, राजीव, विमल कुमार
192	साउथ अफ्रीका	2014/01623	ए नोवल टेक्नीक एण्ड अपरेटस फॉर मॉनीटरिंग हाइड्रोसाइक्लोन स्पाइगॉट चोकिंग	शिवकुमार इरप्पा अंगाडी, सन्तोष कुमार बहेरा, पल्ली सीता राम रेड्डी, बारदा कान्ता मिश्रा
सीएसआई३	भार-आईएमटी			
193	आस्ट्रेलिया	2011303430	ए सिंथेटिक इम्यूनोजेन यूजफुल फॉर जेनरेटिंग लोंग लास्टिंग इम्यूनिटी एण्ड प्रोटेक्शन अगेंस्ट पेथोजेंस	जावेद नईम आगरेवाला, उथमन गॉथमन डेविड जेक्सन, वेगुआंग जेंग
194	बांग्लादेश	1005446	नोवल लेकास एंजाइम एण्ड इट्स एप्लीकेशन	विजय चिंतामन सोनाबने
195	दक्षिण कोरिया	10-1399483	सेरूलोमाइसिन ए एज एन इम्यूनो-सप्रेसिव एजेंट	अरविन्द के सिंगलस, जावेद एन आगरेवाला, राकेश एम वोहरा, रविन्दर एस जॉली
196	यूएसए	8907076	माइकोबेक्टेरियल पेप्टाइड डिफॉर्मिलेज	राहुल सक्सेना, प्रदीप के चक्रवर्ती
197	दक्षिण अफ्रीका	2013/01032	प्रोटीन फ्यूजन कंस्ट्रक्ट्स पोजेसिंग थ्रॉम्बोलाइटिक एण्ड एंटीकोगुलेंट प्रॉपर्टीज	नीरज माहेश्वरी, गिरीश साहनी
सीएसआई३	भार-एनएएल			
198	जर्मनी	1796191	एन इम्प्रूब्ड प्रोसेस फॉर द मेनुफेक्चर ऑव स्ट्रॉन्टियम डोप्ड लेन्थेनम मेंगेनाइट सिरामिक पाउंडर	उदयकुमार एंडी
199	ईपीओ	1796191	एन इम्प्रूव्ड प्रोसेस फॉर द मेनुफेक्चर ऑव स्ट्रॉन्टियम डोप्ड लेन्थेनम मेंगेनाइट सिरामिक पाउडर	उदयकुमार एंडी
200	फ्रांस	1796191	एन इम्प्रूब्ड प्रोसेस फॉर द मेनुफेक्चर ऑव स्ट्रॉन्टियम डोप्ड लेन्थेनम मेंगेनाइट सिरामिक पाउडर	उदयकुमार एंडी
201	यूएसए	8795581	प्रोसेस फॉर द मेनुफेक्चरिंग हाई डेंसिटी स्लिप-कास्ट प्यूज्ड सिलिका बॉडीज	यू. कुमार एंडी, सिल्वाराज एस. कुमार
सीएसआई३	भार-एनबीआरआई			
202	यूएसए	8710301	ए जीन फॉर इन्डयूसिंग मेल स्टेरिलिटी इन प्लांट्स	समीर वी सावंत, राकेश तुली, सुधीर प्रताप सिंह
सीएसआई३	भार-एनसीएल			1
203	आस्ट्रेलिया	2009329038	ऑप्टिकली वेरिएबल प्रोडक्ट सेक्यूरिटी फीचर	गुरूस्वामी कुमारस्वामी
204	आस्ट्रेलिया	2010204075	रूम टेम्प्रेचर इलैक्ट्रोकैमिकल प्रोसेस फॉर सिंथेसाइजिंग टिटेनियम डाइऑक्साइड नैनोनीडल्स	राजेशकुमार शंकर ह्याम, रेशमा कान्ता भोसले, सतीश चंद्र बालकृष्ण ओगले

205	आस्ट्रेलिया	2011225694	सर्फेस मॉडिफाइड पेारस <mark>पॉलीमर्स फॉर एन्हां</mark> स्ड सेल ग्रोथ	प्रसाद एल वी भागवातुला, वीर्जीनिया डी ब्रिट्टो
206	आस्ट्रेलिया	2011219494	AbPDI बेस्ड पोरस मेम्ब्रेन्स	उल्हास कन्हैया लाल खरुल, हर्षद रमेश लोहोकरे
207	बेल्जियम	2253038	सल्फोनिक एसिड फंक्शनलाइज्ड swcnts, ए की टु इन्क्रीज द कन्डिक्टिविटी <mark>ऑव नेफिऑन मेम्ब्रेन्</mark> स फॉर pemfcs एप्लीकेशंस	विजयमोहन के. पिल्लै, आर. कन्नण, भालचंद्र ए. ककाडे
208	कनाड़ा	2625767	प्रोसेस फॉर प्रोड्यूसिंग हाइड्रोकार्बन फ्यूइल	दरभा श्रीनिवास, राजेन्द्र श्रीवास्तव, पॉल रत्नासामी
209	कनाड़ा	2625437	ट्रांसेइस्ट्रीफिकेशन कैटालिस्ट, प्रोसेस फॉर प्रेपरेशन देअरऑव एण्ड ए प्रोसेस फॉर ट्रांसेइस्ट्रीफिकेशन यूजिंग द कैटालिस्ट	दरभा श्रीनिवास, राजेन्द्र श्रीवास्तव, पॉल रत्नासामी
210	कनाड़ा	2718474	मेथड फॉर द प्रेपरेशन ऑव बायोफ्यूइल्स फ्रॉम ग्लाइसेरोल	दरभा श्रीनिवास, लक्ष्मी सैकिया, पॉल रत्नासामी
211	स्विटजरलैंड	2462227	डीएनए लोडेड सपोर्टेड गोल्ड नैनोपार्टिकल्स, प्रोसेस फॉर द प्रेपरेशन एण्ड यूज देअरऑव	प्रसाद एल वी भार्गवतुला, पेरियासामी षणमुगम विजय कुमार, ओथलाधर ऊषर राज अभिलाष, बशीर मोहम्मद खान
212	चीन	जैडएल 201180020676.1	प्रोसेस फॉर द प्रेपरेशन ऑव I- लेक्टाइड ऑव हाई केमिकल यील्ड ऑप्टिकल प्योरिटी	भास्कर भैरवनाथ इडागे, शिवराम स्वामीनाथन
213	चीन	जैडएल 201080033991.3	एक्सेलेरेटेड गेलेशन ऑव रिजेनरेटेड फाइब्रॉइन	शैलेश प्रकाश नागरकर, आशीष किशोर लेले
214	चीन	जैडएल 201180035077.7	इम्प्रूव्ड प्रोसेस फॉर कन्वर्जन ऑव आइसोब्यूटाइलीन टु टेरटियरी ब्यूटाइलेमीन	विजय वसन्त बोकाडे, प्रफुल्ल नराहर जोशी, प्रशान्त सुरेश निफाडकर
215	चीन	जੈडएल 201180014904.4	इन्हीबिटरी एक्टिविटी ऑव बाइटेनेरिआ स्पीशीज	धीमान सरकार, स्वाति प्रमोद जोशी, उपासना सिंह, केतकी दिलीप शुरपाली, रोशन राजन कुलकर्णी
216	चीन	जैडएल 201080033973.5	टिटेनियम जैल कम्पोजीशन फॉर द रिमूवल ऑव ऑर्गेनिक डाइज एण्ड अदर ऑर्गेनिक कन्टेमिनेंट्स फ्रॉम एकुअस सॉल्यूशन	मोहन केरबा डोंगरे, शुभांगी बालचंद्र उम्बारकर
217	चीन	जैडएल 201080004434.9	रूम टेम्प्रेचर इलैक्ट्रोकैमिकल प्रोसेस फॉर सिंथेसाइजिंग टाइटेनियम <mark>डाइऑक्साइड नैनो</mark> नीडल्स	राजेशकुमार शंकर हयाम, रेशमा कान्ता भोसले, सतीश चंद्र बालकृष्ण ओगले
218	चीन	जੈडएल 200980154562.9	ऑप्टिकली वेरिएबल प्रोडक्ट सेक्यूरिटी फीचर	गुरूस्वामी कुमारस्वामी
219	चीन	जैडएल 201180017343.3	कॉम्पेक्ट डेस्कटॉप हाइ्ड्रोजन/ सिन-गैस जेनेरेटर	गणेश रविन्दर काले

			201110	
220	चीन	जैडएल	नोवल प्रोसेस फॉर द प्रेपरेशन ऑव प्योर मिथाइल	प्रशांत पुरुषोत्तम बार्वे, भास्कर
		201080045396.1	लेक्टेट फ्रॉम अल्काली मेटल लेक्टेट यूजिंग कार्बन	दत्तात्रेय कुलकर्णी, मिलिन्द
			डाइऑक्साइड एण्ड मेथानॉल	यशवन्त गुप्ते, संजय नारायण
				नेने, रविन्दर विलियम शिंदे,
				संजय पांडुरंग काम्बले
221	जर्मनी	2545105	सर्फेस मॉडिफाइड पेारस पॉलीमर्स फॉर एन्हांस्ड सेल	प्रसाद एल वी भागवातुला,
			<u>ग्रोथ</u>	वर्जीनिया डी ब्रिट्टो
222	जर्मनी	2601270	ए प्रोसेस फॉर द रिमूवल ऑव पॉलीमर थर्मोसेट्स फ्रॉम	कोथन्डम कृष्ण्मूर्ति
			द स्पेसिफिक सब्स्ट्रेट	
223	जर्मनी	2616499	क्वाटर्नाइज्ड पॉलीबेंजीमिडाजोल	उल्हास कन्हैयालाल खारूल,
				सन्तोष चन्द्रकान्त कुम्भारकर,
				रूपेश सुधाकर भावसार, राहुल
				हनुमंत शेवाते
224	जर्मनी	2675843	पेरीलेनेबिसिमाइड पॉलिएस्टर ब्लेंड फिल्म्स फॉर	आशा श्यामा कुमारी, निशा
			फोटोबोल्टैक एप्लीकेशंस	सिमोन कुमारी
225	जर्मनी	2253038	सल्फोनिक एसिड फंक्शनलाइज्ड swcnts, ए की टु	विजयमोहन के. पिल्लै, आर.
			इन्क्रीज द कन्डिक्टिविटी ऑव नेफिऑन मेम्ब्रेन्स फॉर	कन्नण, भालचंद्र ए. ककाडे
			pemfcs एप्लीकेशंस	
226	डेनमार्क	2531596	ए नोवल फंगल स्ट्रेन ब्यूवेरिआ sp. MTCC 5184	सीता लक्ष्मण रयाली,
			एण्ड ए प्रोसेस फॉर द प्रेपरेशन ऑव एंजाइम्स देअरफ्रॉम	शिवशंकर, स्नेहल विजय मोरे,
				हरीश बंसीलाल खण्डेलवाल,
				चन्द्रबाबू कानन नरसिम्हन,
				सरावनन पलानीवेल,
				पद्मनाभन बलराम
227	ईपीओ	2531596	ए नोवल फंगल स्ट्रेन ब्यूवेरिआ sp. MTCC 5184	सीता लक्ष्मण रयाली,
			एण्ड ए प्रोसेस फॉर द प्रेपरेशन ऑव एंजाइम्स देयरफ्रॉम	शिवशंकर, स्नेहल विजय मोरे,
				हरीश बंसीलाल खण्डेलवाल,
				चन्द्रबाबू कानन नरसिम्हन,
				सरावनन पलानीवेल,
				पद्मनाभन बलराम
228	ईपीओ	1940895	ए मेक्रोमर बेस्ड नोवल कोपॉलीमर एण्ड प्रोसेस	सुवर्णपथाकी रूपाली केदार,
	`		देअरऑव	कुलकर्णी मोहन मोहन
				गोपालकृष्ण
229	ईपीओ	2545105	सर्फेस मॉडिफाइड पेारस पॉलीमर्स फॉर एन्हांस्ड सेल	प्रसाद एल वी भागवातुला,
			ग्रोथ	वर्जीनिया डी ब्रिट्टो
230	ईपीओ	2616499	क्वाटर्नाइज्ड पॉलीबेंजीमिडाजोल	उल्हास कन्हैयालाल खारूल,
				सन्तोष चन्द्रकान्त कुम्भारकर,
				रूपेश सुधाकर भावसार, राहुल
				हनुमंत शेवाते
231	ईपीओ	2539332	प्रोसेस फॉर द प्रेपरेशन ऑव ।- लेक्टाइंड ऑव हाई	भास्कर भैरवनाथ इडागे,
	,		केमिकल यील्ड ऑप्टिकल प्योरिटी	शिवराम स्वामीनाथन
			THE THEO OILLOWN MICOI	101301101111111111111111111111111111111

232	ईपीओ	2462227	डीएनए लोडेड सपोर्टेड गोल्ड नैनोपार्टिकल्स, प्रोसेस फॉर द प्रेपरेशन एण्ड यूज देअरऑव	प्रसाद एल वी भार्गवतुला, पेरियासामी षणमुगम विजय
				कुमार, ओथलाधर ऊषर राज
				अभिलाष, बशीर मोहम्मद खान
233	ईपीओ	2601270	ए प्रोसेस फॉर द रिमूवल ऑव <mark>पॉलीमर थर्मो</mark> सेट्स फ्रॉम द स्पेसिफिक सब्स्ट्रेट	कोथन्डम कृष्ण्मूर्ति
234	ईपीओ	2545089	ग्राफ्ट कोपॉलीमर कॉम्पोजीशन विद ph डिपेंडेंट	रमेश मुथुस्वामी, मोहन
234	३ पाजा	2343009	बिहेवियर	गोपालकृष्ण कुलकर्णी
235	ईपीओ	2253038	सल्फोनिक एसिड फंक्शनलाइज्ड swcnts, ए की टु	विजयमोहन के. पिल्लै, आर.
			इन्क्रीज द कन्डिक्टिविटी ऑव नेफिऑन मेम्ब्रेन्स फॉर	कानन, भालचंद्र ए. ककाडे
			pemfcs एप्लीकेशंस	
236	ईपीओ	2675843	पेरीलेनेबिसिमाइड पॉलिएस्टर ब्लेंड फिल्म्स फॉर	आशा श्यामा कुमारी, निशा
	`		फोटोबोल्टैक एप्लीकेशंस	सिमोन कुमारी
237	स्पेन	2539332	प्रोसेस फॉर द प्रेपरेशन ऑव I- लेक्टाइड ऑव हाई	भास्कर भैरवनाथ इडागे,
237	(41)	2009002	केमिकल यील्ड ऑप्टिकल प्योरिटी	शिवराम स्वामीनाथन
238	फ्रांस	2616499	क्वाटर्नाइज्ड पॉलीबेंजीमिडाजोल	उल्हास कन्हैयालाल खारूल,
				सन्तोष चन्द्रकान्त कुम्भारकर,
				रूपेश सुधाकर भावसार, राहुल
				हनुमंत शेवाते
239	फ्रांस	2545105	सर्फेस मॉडिफाइड पेारस पॉलीमर्स फॉर एन्हांस्ड सेल	प्रसाद एल वी भागवातुला,
			ग्रोथ	वर्जीनिया डी ब्रिट्टो
240	फ्रांस	2601270	ए प्रोसेस फॉर द रिमूवल ऑव पॉलीमर थर्मोसेट्स फ्रॉम	कोथन्डम कृष्ण्मूर्ति
			द स्पेसिफिक सब्स्ट्रेट	
241	फ्रांस	2253038	सल्फोनिक एसिड फंक्शनलाइज्ड swcnts, ए की टु	विजयमोहन के. पिल्लै, आर.
			इन्क्रीज द कन्डिक्टिविटी ऑव नेफिऑन मेम्ब्रेन्स फॉर	कानन, भालचंद्र ए. ककाडे
			pemfcs एप्लीकेशंस	
			सल्फोनिक एसिड फंक्शनलाइज्ड swcnts, ए की टु	विजयमोहन के. पिल्लै, आर.
242	यूके	2253038	इन्क्रीज द कन्डिक्टिविटी ऑव नेफिऑन मेम्ब्रेन्स फॉर	कानन, भालचंद्र ए. ककाडे
	6		pemfcs एप्लीकेशंस	,
			डीएनए लोडेड सपोर्टेड गोल्ड नैनोपार्टिकल्स, प्रोसेस	प्रसाद एल वी भार्गवतुला,
			फॉर द प्रेपरेशन एण्ड यूज देअरऑव	पेरियासामी षणमुगम विजय
243	यूके	2462227	, and the second	कुमार, ओथलाधर ऊषर राज
				अभिलाष, बशीर मोहम्मद खान
	1		सर्फेस मॉडिफाइड पेारस पॉलीमर्स फॉर एन्हांस्ड सेल	प्रसाद एल वी भागवातुला,
244	यूके	2545105	ग्रोथ	वर्जीनिया डी ब्रिट्टो
245	यूके	2601270	ए प्रोसेस फॉर द रिमूवल ऑव पॉलीमर थर्मोसेट्स फ्रॉम	कोथन्डम कृष्णमूर्ति
243	947	2001270	द स्पेसिफिक सब्स्ट्रेट	प्राचरलग पृष्टगारा
2.12		0040400		
246	यूके	2616499	क्वाटर्नाइज्ड पॉलीबेंजीमिडाजोल	उल्हास कन्हैयालाल खारूल,
				सन्तोष चन्द्रकान्त कुम्भारकर, रूपेश सुधाकर भावसार, राहुल
				हनुमंत शेवाते
	1			- 3 ··· ···

247	इजराईल	217402	कन्टीन्युअस फ्लो प्रोसेस फॉर द प्रेपरेशन ऑव सल्फॉक्साइड कम्पाउंडस	अमोल अरविन्द कुलकर्णी, रमेश अन्ना जोशी, रोहिणी रमेश जोशी, नयन तुषार निवांगुने, मनीषा अभिमान जगताप
248	इटली	2601270	ए प्रोसेस फॉर द रिमूवल ऑव पॉलीमर थर्मोसेट्स फ्रॉम द स्पेसिफिक सब्स्ट्रेट	कोथन्डम कृष्ण्मूर्ति
249	जापान	5698683	पल्सैटाइल रिलीज कॉम्पोजीशन ऑव थेराप्यूटिक एजेंट	रमेश मुथुसामी, मोहन गोपालकृष्ण कुलकर्णी
250	जापान	5680085	नोवल प्रोसेस फॉर द प्रेपरेशन ऑव प्योर मिथाइल लेक्टेट फ्रॉम अल्काली मेटल लेक्टेट यूजिंग कार्बन डाइऑक्साइड एण्ड मेथानॉल	प्रशांत पुरुषोत्तम बार्वे, भास्कर दत्तात्रेय कुलकर्णी, मिलिन्द यशवन्त गुप्ते, संजय नारायण नेने, रविन्दर विलियम शिंदे, संजय पांडुरंग काम्बले
251	जापान	5610408	CeAlO₃ पेरोव्स्काइट्स कन्टेनिंग ट्रांजीशन मेटल	आर नन्दिनी देवी, सत्यनारायण वीरा वेंकट चिलुकुरी
252	जापान	5603442	सफेंस मॉडिफाइड पेारस पॉलीमर्स फॉर एन्हांस्ड सेल ग्रोथ	प्रसाद एल वी भागवातुला, वर्जीनिया डी ब्रिट्टो
253	जापान	5547211	रूम टेम्प्रेचर इलैक्ट्रोकैमिकल प्रोसेस फॉर सिंथेसाइजिंग टिटेनियम डाइऑक्साइड नैनोनीडल्स	राजेशकुमार शंकर हयाम, रेशमा कान्ता भोसले, सतीश चंद्र बालकृष्ण ओगले
254	जापान	5692611	एक्सेलेरेटेड गेलेशन ऑव रिजेनरेटेड फाइब्रॉइन	शैलेश प्रकाश नागरकर, आशीष किशोर लेले
255	जापान	5592902	ए कॉम्पोजिशनफॉर ph डिपेंडेंट रिलीज ऑव थेराप्यूटिक एजेंट	रमेश मुथुसामी, मोहन गोपालकृष्ण कुलकर्णी
256	जापान	5716928	टिटेनियम जैल कम्पोजीशन फॉर द रिमूवल ऑव ऑगेंनिक डाइज एण्ड अदर ऑगेंनिक कन्टेमिनेंट्स फ्रॉम एकुअस सॉल्यूशन	मोहन केरबा डोंगरे, शुभांगी भालचंद्र उम्बारकर
257	जापान	5674686	Ph सेंसिटिव ग्राफ्ट कोपॉलीमर	रमेश मुथुसामी, मोहन गोपालकृष्ण कुलकर्णी
258	जापान	5526154	ए प्रोसेस फॉर डिएसिडीफिकेशन यूजिंग मेम्ब्रेंस	उल्हास कन्हैया लाल खारुल, रामचंद्र विट्ठल गद्रे, विट्ठल वेंकटराव जोगदान्द, योगेश जयासिंग चेन्दाके
259	जापान	5615840	सेल्फ स्टैंडिंग नैनोपार्टिकल नेटवर्क्स/स्कैफोल्ड्स विद कंटीलेबल वॉइड डाइमेंशन्स	गुरुस्वामी कुमारास्वामी, कामेन्द्र प्रकाश शर्मा
260	दक्षिण कोरिया	10-1408152	ए नोवल डिकाबोंनिक इनीशिएटर एण्ड इट्स एप्लीकेशन फॉर द सिंथेसिस ऑव अल्फा, गामा डिफंक्शनल पॉलीडाइनेस एण्ड एसबीएस और एसआईएस ट्राइब्लॉक कोपॉलीमर्स इन नॉन-पोलर सॉल्वेंट विदाउट एडिटिब्स	ग्यानो व्यास, मेटमॉर रेचिड, मोरे अरविंद सुधाकर, वडगांवकर प्रकाश पुरुषोत्तम

			201110	
261	नीदरलैंड्स	2539332	प्रोसेस फॉर द प्रेपरेशन ऑव I- लेक्टाइड ऑव हाई केमिकल यील्ड ऑप्टिकल प्योरिटी	भास्कर भैरवनाथ इडागे, शिवराम स्वामीनाथन
262	नीदरलैंड्स	2531596	ए नोवल फंगल स्ट्रेन ब्यूवेरिआ sp. MTCC 5184 एण्ड ए प्रोसेस फॉर द प्रेपरेशन ऑव एंजाइम्स देयरफ्रॉम	सीता लक्ष्मण रयाली, शिवशंकर, स्नेहल विजय मोरे, हरीश बंसीलाल खण्डेलवाल, चन्द्रबाबू कानन नरसिम्हन, सरावनन पलानीवेल, पद्मनाभन बलराम
263	यूएसए	8809593	प्रोसेस फॉर प्रेपरेशन ऑव हाइड्रॉक्सीएसिटोन ऑर प्रोपीलीन ग्लाइकोल	चन्द्रशेखर वसन्त रोडे, अमोल महालिंगप्पा हेंग्ने, अजय अशोक घालवाडकर, रसिक भारत मेने, प्रवीण कुमार हंसराज मोहिते , हरिशंकर पोतदार
264	यूएसए	8975430	फीनोलाइटिक काइनेटिक रिजोल्यूशन ऑव एजिडो एण्ड एल्कॉक्सी एपॉक्साइड्स	प्रतिभा उत्तम कारबल, दयानंद अम्बादास काम्बले, अरुमुगम सुदलई
265	यूएसए	8834701	इलैक्टोंकेमिकल प्रोसेस फॉर सिंथेसिस ऑव ग्रेफीन	धनराज भगवानराव शिंदे, विजयमोहनन कुंजीकृष्णन पिल्लै
266	यूएसए	8841296	सब्स्टीड्रेड 1, 4-dioxa-8-azaspiro [4, 5] डिकेन्स यूजफुल एज फंगीसाइड्स एण्ड ए प्रोसेस फॉर द प्रेपरेशन देअरऑव	मुकुंद विनायक देश पांडे, सुनीता रंजन देशपांडे, फजल शिराजी, प्रीतिमधुकर चौधरी, नेलावेल्ली मल्लेश्वर राव, बैद्यनाथ मोहन्ती, नागेश्वर नाथ शर्मा, आनन्द कुमार बछावत, कालियानन्न विट्टल राव, भीमराव बोधनराव गवाली, वङ्डू वेंकट नारायण रेड्डी, झिल्लू सिंह यादव
267	यूएसए	8865910	1, 2, 4- ट्राईएजोल डेरीवेटिव्स एण्ड देयर एंटी माइकोबेक्टेरियल एक्टिविटी	धीमान सरकार, सुनीता रंजन देशपांडे, शैलजा प्रमोद मेभाटे, अंजली प्रभाकर लिखिते, सम्पा सरकार, अरशद खान, प्रीति मधुकर चौधरी, सयाली रामचंद्र चवाण
268	यूएसए	8715783	पोरस AbPBI [पॉली (2, 5- बेंजीनिडाजोल)] मेम्ब्रेन एण्ड प्रोसेस फॉर प्रेपेरिंग द सेम	उल्हास खारुल, हर्षद लोहोकरे
269	यूएसए	8765447	फंगल स्ट्रेन ब्यूवेरिआ sp. MTCC 5184 एण्ड ए प्रोसेस फॉर द प्रेपरेशन ऑव एंजाइम्स देयरफ्रॉम	सीता लक्ष्मण रयाली, शिवशंकर, स्नेहल विजय मोरे, हरीश बंसीलाल खण्डेलवाल, चन्द्रबाबू कानन नरसिम्हन,

			2014-13	
				सरावनन पलानीवेल पद्मनाभन बलराम
270	यूएसए	8808669	गेस्ट्रोरिटेन्टिव, एक्स्टेंडेड रिलीज कम्पोजीशन ऑव थेराप्यूटिक एजेंट	रमेश मुथुसामी, मोहन् गोपालकृष्ण कुलकर्णी
271	यूएसए	8895760	प्रोसेस फॉर द प्रेपरेशन ऑव एल- लेक्टाइड ऑव हाई केमिकल यील्ड ऑप्टिकल प्योरिटी	भास्कर भैरवनाथ इडागे शिवराम स्वामीनाथन
272	यूएसए	8722935	प्रोसेस फॉर कन्वर्जन ऑव आइसोव्यूटाइलीन टू टेरटिएरी ब्यूटाइलेमाइन	विजय वसन्त बोकाडे, प्रफुल्त नरहर जोशी, प्रशांत सुरेध निफादकर
273	यूएसए	8722071	माइक्रोकेप्सूल्स कंटेनिंग बायोसाइड एण्ड प्रेपरेशन देअरऑव बाइ सॉल्वेंट इवेपोरेशन टेकनीक	शुक्ला परशुराम गजानन स्वामीनाथन शिवराम
274	यूएसए	8945622	सब्टेन्ड रिलीज कॉम्पोजीशन ऑव थरोप्यूटिक एजेंट	रमेश मुथुसामी, मोह गोपाकृष्ण कुलकर्णी
275	यूएसए	8748660	प्रोसेस फॉर द सिंथेसिस ऑन एंटीएपिलिप्टिक ड्रग लेकोसेमाइड	मुथुकृष्णन मुरुगन, मोहम्म मुजाहिद, प्रशांत प्रमो मजूमदार
276	यूएसए	8779097	एक्सेलेरेटेड गेलेशन ऑव रिजेनरेटेड फाइब्रॉइन	शैलेश प्रकाश नागरकर, आशी किशोर लेले
277	यूएसए	8759054	डीएनए लोडेड सपोटेंड गोल्ड नैनोपार्टिकल्स, प्रोसेस फॉर द प्रेपरेशन एण्ड यूज देअ <mark>रऑव</mark>	प्रसाद एल वी भार्गवतुल पेरियासामी षणमुगम विज कुमार, ओथलाधर ऊषर रा अभिलाष, बशीर मोहम्मद खा
278	यूएसए	8975421	प्रोसेस फॉर प्रेपरेशन ऑव गामा-वेलेरोलेक्टोन वाया केटेलिटिक हाइड्रोजेनेशन ऑ <mark>व लेवुलिनिक एसिड</mark>	चन्द्रशेखर वसत रोडे, अमो महालिंगप्पा हेंग्ने
279	यूएसए	8822605	Ph सेंसिटिव ग्राफ्ट कोपॉलीमर	रमेश मुथुसामी, मोहन गोपा कृष्ण कुलकर्णी
280	यूएसए	8754206	मेटल (III) कॉम्प्लेक्स ऑव बाइयूरेटामिड बेस्ड मेक्रोसाइक्लिक लिगेंड एज ग्रीन ऑक्सीडेशन कैटालिस्ट	श्याम सेनगुप्ता, चकाडोव पाण्डा, मुनमुन घोष
281	यूएसए	8802876	प्रोसेस फॉर प्रोड्यूसिंग फैटी एसिड्स	श्रीनिवास दर्भा, जितेन्द्र कुम सत्यार्थी, राज तिरूमलाईस्वामी, शिल शिरीष देशपांडे
282	यूएसए	8877452	नाइट्राइट-रिडक्टेस (NIRB) एज पोटेंशियल एंटी- ट्यूबरकुलर टागेंट एण्ड ए मेथड टू डिटेक्ट द सीवियरिटी ऑन ट्यूबरकुलोसिस डिजीज	धीमान सरकार
283	यूएसए	8932980	ऑर्डर्ड मेसोपोरस टिटेनोसिलीकेट एण्ड द प्रोसेस फॉर द प्रेपरेशन देअरऑव	दर्भा श्रीनिवास, अनुज कुमार

284	यूएसए	8957250	प्रोसेस फॉर केटालिटिक डिहाइड्रेशन ऑव लेक्टिक एसिड टु एक्रिलिक एसिड	मोहन केरबा डोंगरे, शुभांगी भालचंद्र उंबारकर, समाधान तानाजी लोमटे
सीएसआई३	गर-एनईईआरआई			
285	बांग्लादेश	1005443	आर्गेनिक-इनऑर्गेनिक कॉम्पोजिट मैटेरियल फॉर	साधना सुरेश रेयालु, नितिन
			रिमूवल ऑव एनिऑनिक पॉल्यूटेंट्स फ्रॉम वॉटर एण्ड प्रोसेस फॉर द प्रेपरेशन देअरऑव	कुमार लवासेत्वार, अमित कुमार बंसीवाल, कुशीनाथ दिलीप ठाकरे, मनोहर स्नेह जगताप
सीएसआईअ	गर-एनईआईएसटी			
286	यूएसए	8912357	मेथड फॉर द एक्स्ट्रेक्शन ऑव शिकिमिक एसिड	मनोबज्योति बोरदोलोई,
				जयन्त बोराह, दीपक कुमार रॉय, सुभाष चंद्र दत्ता , नबीन चंद्र बरूआ, पारुचुरी गंगाधर राव
287	यूएसए	8841466	सीरीज ऑव आर्टिमिसिनिन डेरीवेटिव्स एण्ड प्रोसेस	गोकुल बैश्य, नबीन चंद्र बरूआ,
	2, ",		फॉर प्रेपरेशन देअरऑव	अभिषेक गोस्वामी, पार्थ प्रतिम सैकिया, पारूचुरी, गंगाधर राव, अजित कुमार सक्सेना, निताशा सूरी, मधुनिका शर्मा
288	यूएसए	8951491	प्रोसेस फॉर द एडजॉपर्शन ऑव टॉक्सिक सल्फर	मृदुस्मिता मिश्रा, राजीब लोचन
200	8,,		बियरिंग गैसेज	गोस्वामी
CSIR-NEI	ST+IGIB			
289	आस्ट्रेलिया	2011281132	एसिड ईस्टर ऑव 2-पाइरीडिनाइलथिओ कम्पाउंड्स	जादव चंद्र शर्मा, दिलीप चंद्र
			बीयरिंग पोटेंट एंटी-इन्फ्लेमेटरी प्रॉपर्टीज	बोरा, पारूचुरी गंगाधरराव, बलराम घोष, साक्षी बलवानी
290	ईपीओ	2595957	एसिड ईस्टर ऑव 2-पाइरीडिनाइलथिओ कम्पाउंड्स बीयरिंग पोटेंट एंटी-इन्फ्लेमेटरी प्रॉपर्टीज	जादव चंद्र शर्मा, दिलीप चंद्र बोरा, पारूचुरी गंगाधरराव, बलराम घोष, साक्षी बलवानी
291	यूके	2595957	एसिड ईस्टर ऑव 2-पाइरीडिनाइलथिओ कम्पाउंड्स	जादव चंद्र शर्मा, दिलीप चंद्र
			बीयरिंग पोटेंट एंटी-इन्फ्लेमेटरी प्रॉपर्टीज	बोरा, पारूचुरी गंगाधरराव, बलराम घोष, साक्षी बलवानी
सीएसआईअ	गर-एनजीआरआई			
292	जर्मनी	2550551	ए सिस्टम फॉर स्कैनिंग ऑव अर्थस सेल्फ-पोटेंशियल फील्ड	विजयगोपाल बांदी, पुरूषोत्तम राजेन्द्र प्रसाद नंदूरी, मुरलीधरन देवनाथ, सत्यनारायण उप्पला
293	डेनमार्क	2550551	ए सिस्टम फॉर स्कैनिंग ऑव अर्थस सेल्फ-पोटेंशियल फील्ड	विजयगोपाल बांदी, पुरूषोत्तम राजेन्द्र प्रसाद नंदूरी, मुरलीधरन देवनाथ, सत्यनारायण उप्पला

	1.00			
294	ईपीओ	2550551	ए सिस्टम फॉर स्कैनिंग ऑव अर्थस सेल्फ-पोटेंशियल फील्ड	विजयगोपाल बांदी, पुरूषोत्तम राजेन्द्र प्रसाद नंदूरी, मुरलीधरन देवनाथ,
				सत्यनारायण उप्पला
295	फ्रांस	2550551	ए सिस्टम फॉर स्कैनिंग ऑव अर्थस सेल्फ-पोटेंशियल फील्ड	विजयगोपाल बांदी, पुरूषोत्तम राजेन्द्र प्रसाद नंदूरी, मुरलीधरन देवनाथ, सत्यनारायण उप्पला
296	यूके	2550551	ए सिस्टम फॉर स्कैनिंग ऑव अर्थस सेल्फ-पोटेंशियल	विजयगोपाल बांदी, पुरूषोत्तम
200	A.,	2000001	फील्ड	राजेन्द्र प्रसाद नंदूरी, मुरलीधरन देवनाथ, सत्यनारायण उप्पला
297	स्वीडन	2550551	ए सिस्टम फॉर स्कैनिंग ऑव अर्थस सेल्फ-पोटेंशियल फील्ड	विजयगोपाल बांदी, पुरूषोत्तम राजेन्द्र प्रसाद नंदूरी, मुरलीधरन देवनाथ, सत्यनारायण उप्पला
नीए सआई अ	्। गर-एनआईआईएस	ਟੀ		
298	आस्ट्रेलिया	2009343120	ए प्रोसेस फॉर द प्रेपरेशन ऑव नोवल नॉन-टॉक्सिक यलो इनऑर्गेनिक कलरेन्ट/पिग्मेंट फ्रॉम सेमेरियम एण्ड मॉलिब्डेनम कम्पाउण्ड्स	मण्डलापुडी लक्ष्मीपति रेड्डी
299	आस्ट्रेलिया	2010348068	नोवल सफेंस मॉडिफिकेशन प्रोसेसेज फॉर फ्लाईऐश एण्ड इडस्ट्रियल एप्लिकेशन्स देअरऑव	सत्यजीत विष्णु शुक्ला, कृष्णा गोपाकुमार वारियर, बैजू विजयन किजाकेलीकुडयिल, शिजिथा थाचन
300	चीन	ਯੈਫआर 201080017745.9	प्रेपरेशन ऑव ग्रीन कलरेन्ट फ्रॉम मिक्स्ड रेयर अर्थ एण्ड मॉलिब्डेनम कम्पाउण्ड्स एण्ड प्रोसेस देअरऑव एज सफेंस कोटिंग्स	मण्डलापुडी लक्ष्मीपति रेड्डी
301	चीन	जैडआर 201110038500.0	नोवल इम्प्रिंटिड पॉलीमर मेटेरियल्स फॉर सेलेक्टिव डिटॉक्सिफिकेशन ऑव एण्डोसल्फेन कंटेमिनेटेड नेचुरल वॉटर्स एण्ड प्रोसेस फॉर प्रेपरेशन देअरऑव	करमल प्रसाद, जोसफ मैरी ग्लाडिस, तलासिल प्रसाद राव
302	चीन	जैडआर 200980149968.8	ए ट्रांसपेरेट चीटम जैल एण्ड ए प्रोसेस फॉर द प्रेपरेशन देअरऑव	एमिलिया अब्राहम थोलेथ, कल्याड सिमी चन्द्राथ
303	जर्मनी	10394356B4	ए नोवल लो टेम्प्रेचर प्रोसेस फॉर द सिंथेसिस ऑव अल्ट्रा-फाइन रूटाइल फेज टाईटेनियम डॉयॉक्साइड पार्टिकल्स थ्रू वेपर फेज हाइड्रोलिसस ऑव टाईटेनियम टेट्राक्लोराइड	गेराल्ड देवासगयम सुरेन्द्र, एनी करिअम्पेनूर जॉन, कुमार पिल्लई राजेन्द्र प्रसाद, शिवरमरण सावित्री
304	जर्मनी	2545181	प्रोसेस फॉर द प्रोडक्शन ऑव वायोलेसिन एण्ड इट्स डेरिवेटिव्स कंटेनिंग बायोएक्टिव पिग्मेंट फ्रॉम क्रोमोबेक्टेरियम sp.NIIST-CKK-01	कृष्णकुमार भास्करन

305	जर्मनी	1966326	एम्फीफिलिक स्क्वेराइन डाइज ए प्रोसेस फॉर द प्रेपरेशन देअरऑव एण्ड दे <mark>यर यूज एज नियर</mark> इंफ्रारेड फ्लुरोसेंस प्रोब्स फॉर बायोलॉजिकल एण्ड इण्डस्ट्रियल	दानाबोयिना रमैयाह, केल्लिएट थलाथवीतिल अरुण, ज्योतिष कुथनापिल्लिल
306	ईपीओ	2545181	एप्लीकेशंस प्रोसेस फॉर द प्रोडक्शन ऑव वायोलेसिन एण्ड इट्स	कृष्णकुमार भास्करन
			डेरिवेटिव्स कंटेनिंग बायोएक्टिव पिग्मेंट फ्रॉम क्रोमोबेक्टेरियम sp.NIIST-CKK-01	2 3
307	ईपीओ	1966326	एम्फीफिलिक स्क्वेराइन डाइज ए प्रोसेस फॉर द प्रेपरेशन देअरऑव एण्ड देयर यूज एज नियर इंफ्रारेड फ्लुरोसेंस प्रोब्स फॉर बायोलॉजिकल एण्ड इण्डस्ट्रियल एप्लीकेशंस	दानाबोयिना रमैयाह, केल्लिएट थलाथवीतिल अरुण, ज्योतिष कुथनापिल्लिल
308	फ्रांस	2545181	प्रोसेस फॉर द प्रोडक्शन ऑव वायोलेसिन एण्ड इट्स डेरिवेटिव्स कंटेनिंग बायोएक्टिव पिग्मेंट फ्रॉम क्रोमोबेक्टेरियम sp.NIIST-CKK-01	कृष्णकुमार भास्करन
309	फ्रांस	1966326	एम्फीफिलिक स्क्वेराइन डाइज ए प्रोसेस फॉर द प्रेपरेशन देयरऑफ एण्ड देयर यूज एज नियर इंफ्रारेड फ्लुरोसेंस प्रोब्स फॉर बायोलॉजिकल एण्ड इण्डस्ट्रियल एप्लीकेशंस	दानाबोयिना रमैयाह, केल्लिएट थलाथवीतिल अरुण, ज्योतिष कुथनापिल्लिल
310	यूके	1966326	एम्फीफिलिक स्क्वेराइन डाइज ए प्रोसेस फॉर द प्रेपरेशन देयरऑफ एण्ड देयर यूज एज नियर इंफ्रारेड फ्लुरोसेंस प्रोब्स फॉर बायोलॉजिकल एण्ड इण्डस्ट्रियल एप्लीकेशंस	दानाबोयिना रमैयाह, केल्लिएट थलाथवीतिल अरुण, ज्योतिष कुथनापिल्लिल
311	यूके	2545181	प्रोसेस फॉर द प्रोडक्शन ऑव वायोलेसिन एण्ड इट्स डेरिवेटिव्स कंटेनिंग बायोएक्टिव पिग्मेंट फ्रॉम क्रोमोबेक्टेरियम sp.NIIST-CKK-01	कृष्णाकुमार भास्करन
312	यूके	2482834	नैनोकॉम्पोजिट फॉर्मिंग माइक्रोकेप्सूल यूजफुल फॉर गेस्ट एनकेप्सुलेशन एण्ड प्रोसेस देअरऑव	चोरप्पन पवित्रन, बिंदु प्रसन्नकुमारन नायर
313	जापान	5575798	ए ट्रांसपेरेट चीटम जैल एण्ड ए प्रोसेस फॉर द प्रेपरेशन देअरऑव	एमिलिया अब्राहम थोलथ, कल्याड सिमी चन्द्रोथ
314	जापान	5628284	प्रेपरेशन ऑव ग्रीन कलरेन्ट फ्रॉम मिक्स्ड रेयर अर्थ एण्ड मॉलिब्डेनम कम्पाउण्ड्स एण्ड प्रोसेस देअरऑव एज सफेंस कोटिंग्स	मण्डलपुडी लक्ष्मीपति रेङ्डी
315	पाकिस्तान	141916	ए नोवल इकोनॉमिसिकल एण्ड एफिशिएंट प्रोसेस फॉर कॉमर्शियल प्रोडक्शन ऑन हाई प्यूरिटी लिग्नन्स फ्रॉम सीसम ऑयल	चामी अरूमुघम, चन्द्रशेखरन पिल्लै बालचन्द्रन, मुल्लान वेलांडी रेश्मा, अन्डिकानु सुन्दरेसन, शाइनी थॉमस, दिव्या सुकुमार, श्यामला कुमारी सत्यनंदन सरिता
316	रूस	2515331	प्रेपरेशन ऑव ग्रीन कलरेन्ट फ्रॉम मिक्स्ड रेयर अर्थ एण्ड मॉलिब्डेनम कम्पाउण्ड्स एण्ड प्रोसेस देयरऑफ एज सर्फेस कोटिंग्स	मण्डलापुडी लक्ष्मीपति रेड्डी

मण्डलापुडी लक्ष्मीपति रेड्डी
कृष्णकुमार भास्करन
चिन्तालागिरी मोहन राव, कुंचला श्रीधर राव, पुप्पला वेंकट रामचन्दर, हाजीब नरहिर राव माधवन, सावित्री शर्मा, गीता
सतपथी, रविकुमार वेंकट बन्दा
चन्द्र प्रकाश शर्मा, मन्नेमचेरिल रामेसन रेखा
चिन्तालागिरी मोहन राव, कुंचला श्रीधर राव, पुप्पला वेंकट रामचन्दर, हाजीब नरहरि राव माधवन, सावित्री शर्मा, गीता सतपथी, रविकुमार वेंकट बन्दा
चिन्तालागिरी मोहन राव, कुंचला श्रीधर राव, पुप्पला वेंकट रामचन्दर, हाजीब नरहरि राव माधवन, सावित्री शर्मा, गीता सतपथी, रविकुमार वेंकट बन्दा
चिन्तालागिरी मोहन राव, कुंचला श्रीधर राव, पुप्पला वेंकट रामचन्दर, हाजीब नरहिर राव माधवन, सावित्री शर्मा, गीता सतपथी, रविकुमार वेंकट बन्दा
चिन्तालागिरी मोहन राव, कुंचला श्रीधर राव, पुप्पला वेंकट रामचन्दर, हाजीब नरहरि राव माधवन, सावित्री शर्मा, गीता सतपथी, रविकुमार वेंकट बन्दा
-
रवि मेहरोत्रा, अंसारी इमरान मुहम्मद, आशीष रंजन, दीप्ति चड्डा, अंजली शर्मा
सुशील कुमार, प्रकाश नारायण दीक्षित, चंद्र मोहन सिंह रोथन

			2014-13	
327	श्री लंका	15884	डेवलपमेंट ऑव थिक फिल्म सिरेमिक गैस सेंसर	विपिन कुमार, किरन जैन, एसटी लक्ष्मीकुमार, टी राघवेन्द्र
328	श्री लंका	16564	इम्प्रूटड वर्जन ऑव टेलीलॉक रिसीवर, यूटिलाइजिंग मोबाइल टेलीफोन नेटवर्क	परमेश्वर बैनर्जी, प्रणाली प्रेमदास थोरट, अनिल कुमार सूरी
329	मौरिशस	00032/2014	डेवलपमेंट ऑव थिक फिल्म सिरेमिक गैस सेंसर	विपिन कुमार, किरन जैन, एसटी लक्ष्मीकुमार, टी राघवेन्द्र
330	फिलिपिन्स	1-2006-501927	ए न्यू मेथॉड फॉर डिटेक्शन ऑव ए प्रिकर्सर फॉर मेजर अर्थक्वेक	डॉ. बी.एस. गेरा, एच.एन. दत्ता, गुरुबीर सिंह. वी.के. ओझा
331	सिंगापुर	174302	ए कॉम्पेक्ट ECG मॉनीटरिंग डिवाइस विद ए फिल्टर फॉर इम्पल्स एण्ड चैनल स्विचिंग ADC नॉइज एण्ड एरर करेक्शन फॉर सीक्वेन्शल सैम्पलिंग ऑव ECG लीड्स	रवि मेहरोत्रा, अंसारी इमरान मुहम्मद, आशीष रंजन, दीप्ति चड्ढा, अंजली शर्मा
332	ताइवान	1450320	प्रोसेस टु मेक फोटो ल्यूमिन्सेंट नैनोस्ट्रक्चर सिलिकॉन थिन फिल्म्स	सुशील कुमार, प्रकाश नारायण दीक्षित, चंद्र मोहन सिंह रोथन
333	यूएसए	8731644	ECG डिवाइस विद इम्पल्स एण्ड चैनल स्विचिंग ADC नॉइज फिल्टर एण्ड एरर करेक्टर फॉर डिराइट्ड लीड्स	रवि मेहरोत्रा, अंसारी इमरान मुहम्मद, आशीष रंजन, दीप्ति चड्ढा, अंजली शर्मा
334	यूएसए	8994911	लॉंग ड्यूरेशन आप्टिकल मेमोरी डिवाइस बेस्ड ऑन डिफॉर्म्ड हेलिक्स फेरोइलैक्ट्रिक लीक्विड क्रिस्टल मैटेरियल एण्ड ए मेथॉड फॉर द डेवलमेंट देअरऑव	जय प्रकाश, अजय कुमार, चौधरी अमित, मलिक अनु, कुंडू इन्द्रणानी, बिरादर अशोक माणिक राव
335	यूएसए	8790537	प्रोसेस फॉर द प्रेपरेशन ऑव सॉलिड पॉलिमर इलैक्ट्रोलाइट्स यूजिंग आयोनिक लीक्विड्स	शहजादा अहमद, सुहासिनी अविनाश अग्निहोत्री, मेलेपुर्था दीपा
336	यूएसए	8715612	ए प्रोसेस फॉर द रिमूवल ऑव आर्सेनिक एण्ड क्रोमियम फ्रॉम वॉटर	नाहर सिंह, रश्मि, सुखवीर सिंह, दया सोनी, रेणु पसरीचा, प्रभात कुमार गुप्ता

संलग्न क ॥।-

सीएसआईआर प्रयोगशालाओं द्वारा क्षेत्र-वार प्रकाशन (श्रेष्ठ 50 शोध-पत्र)

जैविक विज्ञान

जर्नल्स के इम्पेक्ट फैक्टर पर आधारित

क्र .सं.	प्रयोगशाला	प्रथम लेखक	जर्नल्स	आईएफ-2014
1	सीसीएमबी	लेजारिडिस, आई	नेचर; 2014, वॉल्यूम 513, आईएसएस 7518, पीपी 409	41.456
2	एनबीआरआई	सिंह, पीसी	साइंस; 2014, वॉल्यूम 346, आईएसएस 6205, पीपी 49-49	33.611
3	सीसीएमबी	दंडपाणी, पीएस	नेचर जिनेटिक्स; 2014, वॉल्यूम 46, आईएसएस 6, पीपी 635-639	29.352
4	सीसीएमबी	चट्टोपाध्याय, ए	अकाउंट ऑफ केमिकल रिसर्च; 2014, वॉल्यूम 47, आईएसएस 1, पीपी 12-19	22.323
5	आईआईसीबी	दास, एस	साइंस ट्रांसलेशन मेडिसन; 2014, वॉल्यूम 6, आईएसएस 234, पीपी 56	15.843
6	आईजीआईबी	नटराजन, वीटी	नेचर केमिकल बायोलॉजी; <mark>2014, वॉल्यूम 10,</mark> आईएसएस 7, पीपी 542-551	12.996
7	आईआईटीआर, आईजीआईबी	तिवारी, एसके	एसीएस नैनो; 2014, वॉल्यूम 8, आईएसएस 1, पीपी 76-103	12.881
8	आईएमटी	बोराडिया, वीएम	नेचर कम्युनिकेशन्स; 2014, वॉल्यूम 5, पीपी 4730	11.470
9	सीडीआरआई	कोले, डी	एंगेवांड्टे केमीइंटरनेशनल एडीशन-; 2014, वॉल्यूम 53, आईएसएस 48, पीपी 13196-13200	11.261
10	आईआईसीबी	दास, जेक	एंगेवांड्टे कैमीइंटरनेशनल एडीशन-; 2014, वॉल्यूम 53, आईएसएस 47, पीपी 12781-12784	11.261
11	आईआईसीबी	जंग, वाई	एंगेवांड्टे कैमीइंटरनेशनल एडीशन-; 2014, वॉल्यूम 53, आईएसएस 4, पीपी 1003-1007	11.261
12	आईजीआईबी	त्यागी, टी	ब्लड; 2014, वॉल्यूम 123, आईएसएस 8, पीपी 1250-1260	10.452
13	आईजीआईबी	अहमद, टी	ईएमबीओ जर्नल; 2014, वॉल्यूम 33, आईएसएस 9, पीपी 994-1010	10.434
14	सीसीएमबी, आईआईसीटी	वीरैया, पी	बायोलॉजिकल साइकिएट्री; 2014, वॉल्यूम 76, आईएसएस 3, पीपी 231-238	10.255
15	आईजीआईबी, एनसीएल	नटराजन, वीटी	प्रोसीडिंग्स ऑफ द नेशनल अकेडमी ऑफ साइंस ऑफ यूनाइटेड स्टेट ऑफ अमरीका; 2014, वॉल्यूम 111, आईएसएस 6, पीपी 2301-2306	9.674
16	सीसीएमबी	पटेल, एबी	प्रोसीडिंग्स ऑफ द नेशनल <mark>अकेडमी ऑफ साइंस ऑ</mark> फ यूनाइटेड स्टेट ऑफ अमरीका; 201 <mark>4, वॉल्यूम 111, आई</mark> एसएस 14, पीपी 5385-5390	9.674
17	सीसीएमबी	किन, वाई	प्लांट सैल; 2014, वॉल्यूम <mark>26, आईएसएस 4,</mark> पीपी 1612- 1628	9.338
18	सीआईएमएपी	अवस्थी, ए	आईएसएमई जर्नल; 2014, वॉल्यूम 8, आईएसएस 12, पीपी 2445-2452	9.302
19	सीसीएमबी	याज्ञनिक, सीएस	इंटरनेशनल जर्नल ऑफ ऐपीडेमिओलॉजी; 2014, वॉल्यूम 43, आईएसएस 5, पीपी 1487-1497	9.176
20	आईजीआईबी, सीसीएमबी, आईआईसीटी	ठाकुर, आरके	न्यूक्लिक एसिड्स रिसर्च; 2014, वॉल्यूम 42, आईएसएस 18, पीपी 11589-11600	9.112

			2014-13	
21	आईजीआईबी, आईआईसीटी, सीसीएमबी	यादव, वीके	न्यूक्लिक एसिड्स रिसर्च; 2014, वॉल्यूम 42, आईएसएस 2, पीपी 764-773	9.112
22	आईजीआईबी	यादव, वीके	न्यूक्लिक एसिड्स रिसर्च; 2014, वॉल्यूम 42, आईएसएस 15, पीपी 9602-9611	9.112
23	आईजीआईबी	श्रीवास्तव, आर	न्यूक्लिक एसिड्स रिसर्च; 2014, वॉल्यूम 42, आईएसएस 12, पीपी 7894-7910	9.112
24	आईआईसीबी	दास, बीबी	न्यूक्लिक एसिड्स रिसर्च; 2014, वॉल्यूम 42, आईएसएस 7, पीपी 4435-4449	9.112
25	आईआईसीबी	बासु, एस	न्यूक्लिक एसिड्स रिसर्च; 2014, वॉल्यूम 42, आईएसएस 11, पीपी 7170-7185	9.112
26	आईआईटीआर	श्मित्ज़, यू	न्यूक्लिक एसिड्स रिसर्च; 2014, वॉल्यूम 42, आईएसएस 12, पीपी 7539-7552	9.112
27	आईएमटीईसीएच	गौतम, ए	न्यूक्लिक एसिड्स रिसर्च; 2014, वॉल्यूम 42, आईएसएस डी1, पीपी D444-D449	9.112
28	आईएमटीईसीएच	मेहता, ए	न्यूक्लिक एसिड्स रिसर्च; 2014, वॉल्यूम 42, आईएसएस डी1, पीपी डी132-डी141	9.112
29	आईएमटीईसीएच	कुर्रशी, ए	न्यूक्लिक एसिड्स रिसर्च; 2014, वॉल्यूम 42, आईएसएस डी1, पीपी डी1147-डी1153	9.112
30	सीसीएमबी	कौर, जी	बायोटेक्नोलॉजी एडवांसिस; 2014, वॉल्यूम 32, आईएसएस 3, पीपी 551-563	9.015
31	सीडीआरआई	मेहरा, एनके	बायोमैटिरियल्स; 2014, वॉल्यूम 35, आईएसएस 15, पीपी 4573-4588	8.557
32	आईजीआईबी	शर्मा, आर	बायोमैटिरियल्स; 2014, वॉल्यूम 35, आईएसएस 24, पीपी 6563-6575	8.557
33	सीडीआरआई	सिंह, डीके	मेडिसिनल रिसर्च रिव्यूस; <mark>2014, वॉल्यूम 34,</mark> आईएसएस 3, पीपी 567-595	8.431
34	आईआईसीबी	चंग, केएच	सेल रिपोर्ट्स; 2014, वॉल्यूम 9, आईएसएस 6, पीपी 2084- 2097	8.358
35	सीडीआरआई	सिंह, एक	डाइबिटिज; 2014, वॉल्यूम 63, आईएसएस 10, पीपी 3530- 3544	8.095
36	सीडीआरआई, आईआईसीटी	पवार, वीके	जर्नल ऑफ कंट्रोल्ड रिलीज; 2014, वॉल्यूम 196, पीपी 168- 183	7.705
37	सीडीआरआई	पवार, वीके	जर्नल ऑफ कंट्रोल्ड रिलीज; 2014, वॉल्यूम 196, पीपी 295- 306	7.705
38	सीडीआरआई	पवार, वीके	जर्नल ऑफ कंट्रोल्ड रिलीज; 2014, वॉल्यूम 183, पीपी 51-66	7.705
39	आईजीआईबी	बैनर्जी, सी	प्लॉस पैथोजेंस; 2014, <mark>वॉल्यूम 10, आईएसएस 4,</mark> पीपी ई1004018-	7.562
40	सीसीएमबी	सिंह, एनपी	प्लॉस जेनेटिक्स; 2014, वॉल्यूम 10, आईएसएस 10, पीपी ई1004717-	7.528
41	सीडीआरआई	ज्योति, ए	एंटीऑक्सीडेंट्स एंड रेडॉक्स सिम्नेलिंग; 2014, वॉल्यूम 20, आईएसएस 3, पीपी 417-431	7.407
42	आईजीआईबी	सिंह, एम	नैनोस्केल; 2014, वॉल्यूम <mark>६, आईएसएस 21, पीपी 12849-</mark> 12855	7.394
43	सीएफटीआरआई	विजयेन्द्र, एसवीएन	क्रिटीकल रिव्यू इन बायोटेक्नोलॉजी; 2014, वॉल्यूम 34, आईएसएस 4, पीपी 338-357	7.178
44	एनबीआरआई	तिवारी, एम	प्लांट सैल एंड इंवायरनमेंट; 2014, वॉल्यूम 37, आईएसएस 1, पीपी 140-152	6.960
45	सीआईएमएपी	मिश्रा, आरसी	प्लांट फिजियोलॉजी; 2014, वॉल्यूम 164, आईएसएस 2, पीपी 1028-1044	6.841

46	सीडीआरआई,	विश्वनाधाम, केकेडीआर	केमिकल कम्युनिकेशन्स; 2014, वॉल्यूम 50, आईएसएस 88,	6.834
	आईआईसीटी	,	पीपी 13517-13520	
47	आईजीआईबी,	नाहर, एस	केमिकल कम्युनिकेशन्स; 2014, वॉल्यूम 50, आईएसएस 35,	6.834
	एनसीएल,		पीपी 4639-4642	
	एसीएसआईआर			
48	सीडीआरआई	प्रमाणिक, एमएमडी	केमिकल कम्युनिकेशन्स; 2014, वॉल्यूम 50, आईएसएस 85,	6.834
			पीपी 12896-12898	
49	आईआईसीबी	जना, बी	केमिकल कम्युनिकेशन्स; 2014, वॉल्यूम 50, आईएसएस 78,	6.834
			पीपी 11595-11598	
50	आईआईसीबी	बिश्वास, ए	केमिकल कम्युनिकेशन्स; 2014, वॉल्यूम 50, आईएसएस 20,	6.834
			पीपी 2604-2607	
51	आईआईआईएम	देशिदि, आर	केमिकल कम्युनिकेशन्स; 2014, वॉल्यूम 50, आईएसएस 67,	6.834
			पीपी 9533-9535	
52	आईआईआईएम	राव, डीएन	केमिकल कम्युनिकेशन्स; 2014, वॉल्यूम 50, आईएसएस 85,	6.834
			पीपी 12911-12914	
53	आईआईआईएम	मुदुदुडड्ला, आर	केमिकल कम्युनिकेशन्स; 2014, वॉल्यूम 50, आईएसएस 81,	6.834
			पीपी 12076-12079	
54	आईएमटी	प्रियंका	केमिकल कम्युनिकेशन्स; 2014, वॉल्यूम 50, आईएसएस 9,	6.834
			पीपी 1080-1082	

2014-15

सीएसआईआर प्रयोगशालाओं द्वारा क्षेत्र-वार प्रकाशन (श्रेष्ठ 50 शोध-पत्र)

रसायन विज्ञान

जर्नल्स के इम्पेक्ट फैक्टर पर आधारित

क्र .सं.	प्रयोगशाला	प्रथम लेखक	जर्नल्स	आईएफ-2014
1	एनसीएल	शिंगटे, बीबी	केमिकल रिव्यूस; 2014, वॉल्यूम 114,	46.568
1			आईएसएस 12, पीपी 6349-6382	
2	एनईआईएसटी	कर्माकर, आर	केमिकल रिव्यूस; 2014, वॉल्यूम 114,	46.568
2			आईएसएस 12, पीपी 6213-6284	
2	एनआईआईएसटी	बाबू, एसएस	केमिकल रिव्यूस; 2014, वॉल्यूम 114,	46.568
3			आईएसएस 4, पीपी 1973-2129	
4	एनआईआईएसटी	प्रवीण, वीके	केमिकल सोसाइटी रिव्यूस; 2014, वॉल्यूम 43,	33.383
4			आईएसएस 12, पीपी 4222-4242	
5	आईआईसीटी	उमादेवी, डी	अकाउंट्स ऑफ केमिकल रिसर्च; 2014, वॉल्यूम	22.323
3			47, आईएसएस 8, पीपी 2574-2581	
6	एनसीएल	पलनीसेल्वम, टी	एनर्जी एंड एन्वायरनमेंटल साइंस; 2014, वॉल्यूम 7,	20.523
O			आईएसएस 3, पीपी 1059-1067	
7	एनसीएल	पुथूसेरी, डी	एनर्जी एंड एन्वायरनमेंटल साइंस; 2014, वॉल्यूम 7,	20.523
,			आईएसएस 2, पीपी 728-735	
8	आईआईसीटी	मेलशर्स, एफ	केंसर डिस्कवरी; 2014, वॉल्यूम 4, आईएसएस	19.453
8			2, पीपी 246-257	
9	एनसीएल	रथ, एके	एडवांस्ड मैटिरियल्स; 2014, वॉल्यूम 26,	17.493
9			आईएसएस 27, पीपी 4741+	
10	एनसीएल,	जॉन, आर	एसीएस नैनो; 2014, वॉल्यूम 8, आईएसएस 1,	12.881
10	सीईसीआरआई		पीपी 234-242	
11	सीएलआरआई	मैथ्यु, ए	एसीएस नैनो; 2014, वॉल्यूम 8, आईएसएस 1,	12.881
11			पीपी 139-152	
12	आईआईसीटी	गोनेनी, एस	एसीएस नैनो; 2014, वॉल्यूम 8, आईएसएस 11,	12.881
12			पीपी 11409-11424	
13	एनसीएल	कोश्थी, वी	कॉर्डीनेशन केमिस्ट्री रिव्यूस; 2014, वॉल्यूम 265,	12.239
13			पीपी 52-73	
14	एनसीएल	चिक्कली, एसएच	कॉर्डीनेशन केमिस्ट्री रिव्यूस; 2014, वॉल्यूम 262,	12.239
14			पीपी 1-15	
	एनसीएल	साहा, एस	जर्नल ऑव द अमेरिकन कैमिकल सोसाइटी; 2014,	12.113
15			वॉल्यूम 136, आईएसएस 42, पीपी 14845-	
			14851	

	एनसीएल	पंडा, सी	जर्नल ऑव द अमेरिकन कैमिकल सोसाइटी; 2014,	12.113
16			वॉल्युम 136, आईएसएस 35, पीपी 12273-	
			12282	
	एनसीएल	घोष, एम	जर्नल ऑव द अमेरिकन कैमिकल सोसाइटी; 2014,	12.113
17			वॉल्यूम 136, आईएसएस 27, पीपी 9524-	
			9527	
	एनसीएल	चन्द्रा, एस	जर्नल ऑव द अमेरिकन कैमिकल सोसाइटी; 2014,	12.113
18			वॉल्यूम 136, आईएसएस 18, पीपी 6570-	
			6573	
	एनआईआईएसटी	अनीस, पी	जर्नल ऑव द अमेरिकन कैमिकल सोसाइटी; 2014,	12.113
19			वॉल्यूम 136, आईएसएस 38, पीपी 13233-	
			13239	
	एनआईआईएसटी	सकाकीबारा, के	जर्नल ऑव द अमेरिकन कैमिकल सोसाइटी; 2014,	12.113
20			वॉल्यूम 136, आईएसएस 24, पीपी 8548-	
			8551	
	एनआईआईएसटी	शिवदास, एपी	जर्नल ऑव द अमेरिकन कैमिकल सोसाइटी; 2014,	12.1103
21			वॉल्यूम 136, आईएसएस 14, पीपी 5416-	
			5423	
22	एनसीएल	राणा, ए	एडवांस्ड फंक्शनल मैटिरियल्स; 2014, वॉल्यूम	11.805
22			24, आईएसएस <mark>25, पीपी 3962-396</mark> 9	
23	सीईसीआरआई	विनोद, एस	नेचर कम्युनिकेशन्स; 2014, वॉल्यूम 5, पीपी	11.470
23			4541-	
24	सीएलआरआई	यंग, बी	एंगेवांड्टे कैमीइंटरनेशनल एडीशन-; 2014, वॉल्यूम	11.261
24			53, आईएसएस 49, पीपी 13360-13364	
25	एनसीएल	सेन, एसएस	एंगेवांड्टे कैमीइंटरनेशनल एडीशन-; 2014, वॉल्यूम	11.261
25			53, आईएसएस 34, पीपी 8820-8822	
26	एनसीएल	अहीरे, एमएम	एंगेवांड्टे कैमीइंटरनेशनल एडीशन-; 2014, वॉल्यूम	11.261
26			53, आईएसएस 27, पीपी 7038-7042	
27	एनसीएल	नागरकर, एसएस	एंगेवांड्टे कैमीइंटरनेशनल एडीशन-; 2014, वॉल्यूम	11.261
27			53, आईएसएस 10, पीपी 2638-2642	
20	सीईसीआरआई	पेंग, जेडी	नैनो एनर्जी; 2014, वॉल्यूम 10, पीपी 212-	10.325
28			221	
	एनसीएल	किम, आई	प्रोसीडिंग्स ऑफ द नेशनल एकेडमी ऑफ साइंसेज	9.674
20			ऑफ द यूनाइटेड स्टेट्स ऑफ अमेरिका; 2014,	
29			वॉल्यूम 111, आईएसएस 31, पीपी 11353-	
			11358	
30	आईआईपी	घोष, एस	एसीएस कैटेलिसिस; 2014, वॉल्यूम 4,	9.312
30			आईएसएस 7, पीपी 2169-2174	
	1			

	एनसीएल	देवाराजी, पी	एसीएस कैटेलिसिस; 2014, वॉल्यूम 4,	9.312
31			आईएसएस 9, पीपी 2844-2853	7.00
	एनसीएल	रॉय, के	एसीएस कैटेलिसिस, 2014, वॉल्यूम 4,	9.312
32			आईएसएस 6, पीपी 1801-1811	
22	एनआईआईएसटी	दिव्या, केपी	कैमिकल साइंस; 2014, वॉल्यूम 5, आईएसएस	9.211
33			9, पीपी 3469-3474	
2.4	एनसीएल		न्यूक्लिक एसिड्स रिसर्च; 2014, वॉल्यूम 42,	9.112
34		नर्लीकर, एल	आईएसएस 20, पीपी 12388-12403	
35	आईआईसीटी	बारूई, एस	बायोमैटिरियल्स; 2014, वॉल्यूम 35, आईएसएस	8.557
33			5, पीपी 1643-1656	
36	आईआईसीटी	वाई, पीएफ	बायोमैटिरियल्स; 2014, वॉल्यूम 35, आईएसएस	8.557
30			3, पीपी 899-907	
37	एनसीएल	पुथुस्सेरी, डी	स्मॉल; 2014, वॉल्यूम 10, आईएसएस 21,	8.368
37			पीपी 4395-4402	
38	एनसीएल	राजामणिकम, आर	केमिस्ट्री ऑफ मैटिरियल्स; 2014, वॉल्यूम 26,	8.354
36			आईएसएस 17, पीपी 5161-5168	
39	एनसीएल	प्रसाद, बीएलवी	केमिस्ट्री ऑफ मैटिरियल्स; 2014, वॉल्यूम 26,	8.354
39			आईएसएस 12, पीपी 3593-3594	
40	एनसीएल	बुसुपल्ली, बी	केमिस्ट्री ऑफ मैटिरियल्स; 2014, वॉल्यूम 26,	8.354
40			आईएसएस 11, पीपी 3436-3442	
41	आईआईसीटी	मुखर्जी, एस	थेरेनोस्टिक्स; 2014, बॉल्यूम 4, आईएसएस 3,	8.022
41			पीपी 316-335	
42	सीएलआरआई	शी, जे	ग्रीन केमिस्ट्री; 2014, वॉल्यूम 16, आईएसएस 8,	8.020
72			पीपी 3830-3840	
43	सीएसएमसीआरआई	चौधरी, जेपी	ग्रीन केमिस्ट्री; 2014, वॉल्यूम 16, आईएसएस	8.020
73			10, पीपी 4552-4558	
44	सीएसएमसीआरआई	रॉव, एसएन	ग्रीन केमिस्ट्री; 2014, बॉल्यूम 16, आईएसएस 9,	8.020
77			पीपी 4122-4126	
45	सीएसएमसीआरआई	त्रिवेदी, टीजे	ग्रीन केमिस्ट्री; 2014, वॉल्यूम 16, आईएसएस 1,	8.020
73			पीपी 320-330	
46	आईआईसीटी	मदभूषी, एस	ग्रीन केमिस्ट्री; 2014, वॉल्यूम 16, आईएसएस 6,	8.020
10			पीपी 3125-3131	
47	आईआईसीटी	चेन्नापुरम, एम	ग्रीन केमिस्ट्री; 2014, बॉल्यूम 16, आईएसएस 6,	8.020
-			पीपी 3237-3246	
48	आईआईसीटी	वेलेकरन, एम	ग्रीन केमिस्ट्री; 2014, वॉल्यूम 16, आईएसएस 5,	8.020
			पीपी 2788-2797	

40	आईआईसीटी	मौर्या, आरए	ग्रीन केमिस्ट्री; 2014, वॉल्यूम 16, आईएसएस 1,	8.020
49			पीपी 116-120	
50	आईआईपी	आचार्या, एसएस	ग्रीन केमिस्ट्री; 2014, वॉल्यूम 16, आईएसएस 5,	8.020
50			पीपी 2500-2508	
<i>5</i> 1	आईआईपी	घोष, एस	ग्रीन केमिस्ट्री; 2014, वॉल्यूम 16, आईएसएस 5,	8.020
51			पीपी 2826-2834	
50	एनसीएल	राजपूत, बीएस	ग्रीन केमिस्ट्री; 2014, वॉल्यूम 16, आईएसएस 8,	8.020
52			पीपी 3810-3818	
52	एनसीएल	टेथोड़, एपी	ग्रीन केमिस्ट्री; 2014, वॉल्यूम 16, आईएसएस	8.020
53			12, पीपी 4944-4954	
5.4	एनईआईएसटी	भुयान, डी	ग्रीन केमिस्ट्री; 2014, वॉल्यूम 16, आईएसएस 3,	8.020
54			पीपी 1158-1162	

2014-15

सीएसआईआर प्रयोगशालाओं द्वारा क्षेत्र-वार प्रकाशन (श्रेष्ठ 50 शोध-पत्र)

इंजीनियरी विज्ञान

जर्नल्स के इम्पेक्ट फैक्टर पर आधारित

क्र .सं.	प्रयोगशाला	प्रथम लेखक	जर्नल्स	आईएफ- 2014
1	एनईईआरआई	मंगरूलकर, पीए	एनर्जी एंड इंवायरनमेंटल साइंस; 2014, वॉल्यूम 7, आईएसएस 12, पीपी 4087-4094	20.523
2	एनएएल	सिल्वाकुमार, एन	एडवांस्ड मैटिरियल्स; 2014, वॉल्यूम 26, आईएसएस 16, पीपी 2552-2557	17.493
3	आईएमएमटी	श्रीवास्ताव, एस	एसीएस नैनो; 2014, वॉल्यूम 8, आईएसएस 11, पीपी 11891-11898	12.881
4	आईएमएमटी	मोघिमी, एन	जर्नल ऑव द अमेरिकन कैमिकल सोसाइटी; 2014, वॉल्यूम 136, आईएसएस 29, पीपी 10478-10485	12.113
5	एनएएल	आसी, जे	एस्ट्रोफिजिकल जर्नल सप्लीमेंट सीरिज; 2014, वॉल्यूम 211, आईएसएस 1, पीपी 7-	11.215
6	सीबीआरआई	सिंह, एलपी	एडवांसिस इन कोलोइड एंड इंटरफेस साइंस; 2014, वॉल्यूम 214, पीपी 17-37	7.776
7	आईएमएमटी	मारथा, एस	केमसूसकेम; 2014, वॉल्यूम 7, आईएसएस 2, पीपी 585-597	7.657
8	एनएएल	आसी, जे	फिजीकल रिव्यू लैटर्स; 2014, वॉल्यूम 112, आईएसएस 13, पीपी 131101-	7.512
9	एनएएल	आसी, जे	फिजीकल रिव्यू लैटर्स; 2014, बॉल्यूम 113, आईएसएस 23, पीपी 231101-	7.512
10	एनएएल	आसी, जे	फिजीकल रिव्यू लैटर्स; 2014, वॉल्यूम 113, आईएसएस 1, पीपी 11102-	7.512

11	आईएमएमटी	बारिक रस्मिता	जर्नल ऑव मैटिरियल कैमिस्ट्रि ए; 2014, वॉल्यूम 2, पीपी 12380-12389	7.443
12	सीजीसीआरआई	चट्टोपाध्याय, एस	जर्नल ऑव मैटिरियल कैमिस्ट्रि ए; 2014, वॉल्यूम 2, आईएसएस 44, पीपी 19029-19035	7.443
13	सीजीसीआरआई	प्रमाणिक, ए	जर्नल ऑव मैटिरियल कैमिस्ट्रि ए; 2014, वॉल्यूम 2, आईएसएस 43, पीपी 18515-18522	7.443
14	सीजीसीआरआई	सेनगुप्ता, डी	जर्नल ऑव मैटिरियल कैमिस्ट्रि ए; 2014, वॉल्यूम 2, आईएसएस 11, पीपी 3986-3992	7.443
15	सीएमईआरआई	जियांग, टी	जर्नल ऑव मैटिरियल कैमिस्ट्रि ए; 2014, वॉल्यूम 2, आईएसएस 27, पीपी 10557-10567	7.443
16	सीएमईआरआई	किम, एनएच	जर्नल ऑव मैटिरियल कैमिस्ट्रि ए; 2014, वॉल्यूम 2, आईएसएस 8, पीपी 2681-2689	7.443
17	आईएमएमटी	समनतारा, एके	जर्नल ऑव मैटिरियल कैमिस्ट्रिए; 2014, वॉल्यूम 2, आईएसएस 32, पीपी 12677-12680	7.443
18	आईएमएमटी	पाढी, डीके	जर्नल ऑव मैटिरियल कैमिस्ट्रि ए; 2014, बॉल्यूम 2, आईएसएस 26, पीपी 10300-10312	7.443
19	आईएमएमटी	नशीम, ए	जर्नल ऑव मैटिरियल कैमिस्ट्रि ए; 2014, बॉल्यूम 2, आईएसएस 43, पीपी 18405-18412	7.443
20	आईएमएमटी	वारद्वाज, जीबीबी	जर्नल ऑव मैटिरियल कैमिस्ट्रि ए; 2014, वॉल्यूम 2, आईएसएस 20, पीपी 7526-7534	7.443
21	आईएमएमटी	मार्था, एस	जर्नल ऑव मैटिरियल कैमिस्ट्री ए; 2014, वॉल्यूम 2, आईएसएस 10, पीपी 3621-3631	7.443
22	सीएमईआरआई	खानरा, पी	नैनोस्केल; 2014, बॉल्यूम 6, आईएसएस 9, पीपी 4864-4873	7.394
23	सीजीसीआरआई	माइती, एस	केमिकल कम्युनिकेशन्स; 2014, बॉल्यूम 50, आईएसएस 79, पीपी 11717-11720	6.834

24	सीएमईआरआई	चटर्जी, डी	केमिकल कम्युनिकेशन्स; 2014, वॉल्यूम 50, आईएसएस	6.834
			93, पीपी 14562-14565	
25	एनईईआरआई	फादिल, एनए	केमिकल कम्युनिकेशन्स; 2014, वॉल्यूम 50, आईएसएस	6.834
			49, पीपी 6451-6453	
26	सीजीसीआरआई	दास, जेक	एसीएस एप्लाइड मैटिरियल्स एंड इंटरफेसिस; 2014,	6.723
			वॉल्यूम 6, आईएसएस 23, पीपी 20717-20728	
27	सीजीसीआरआई	माइती, एस	एसीएस एप्लाइड मैटिरियल्स एंड इंटरफेसिस; 2014,	6.723
			वॉल्यूम 6, आईएसएस 13, पीपी 10754-10762	
28	आईएमएमटी	भट्ट, पी	एसीएस एप्लाइड मैटिरियल्स एंड इंटरफेसिस; 2014,	6.723
			वॉल्यूम 6, आईएसएस 20, पीपी 17579-17588	
29	एनएएल	गुप्ता, एन	एसीएस एप्लाइड मैटिरियल्स एंड इंटरफेसिस; 2014,	6.723
			वॉल्यूम 6, आईएसएस 24, पीपी 22733-22742	
30	आईएमएमटी	पैनी, एस	एसीएस एप्लाइड मैटिरियल्स एंड इंटरफेसिस; 2014,	6.723
			वॉल्यूम 6, आईएसएस 2, पीपी 839-846	
31	सीजीसीआरआई	शिवायोली, एफ	बायोसेंसर्स एंड बायोइलेक्ट्रोनिक्स; 2014, वॉल्यूम 60,	6.409
			पीपी 305-310	
32	सीजीसीआरआई	मुखोपाध्याय, जे	जर्नल ऑव पावर सोर्सेस; 2014, वॉल्यूम 252, पीपी	6.217
			252-263	
33	सीजीसीआरआई	पांडा, एसके	जर्नल ऑव पावर सोर्सिस; 2014, वॉल्यूम 249, पीपी	6.217
			59-65	
34	एनईईआरआई	ली, वाई	जर्नल ऑव पावर सोर्सेस; 2014, वॉल्यूम 269, पीपी	6.217
			430-439	
35	सीएमईआरआई	यान, वाईएन	कार्बन; 2014, वॉल्यूम 74, पीपी 195-206	6.196
36	सीएमईआरआई	झांग, एच	कार्बन; 2014, वॉल्यूम 69, पीपी 66-78	6.196
37	एनएमएल	सिंघबाबू, वाईएन	कार्बन; 2014, वॉल्यूम 74, पीपी 32-43	6.196
38	सीएमईआरआई	अरूण, आरके	लैब ऑन ए चिप; 2014, वॉल्यूम 14, आईएसएस 19,	6.115
			पीपी 3800-3808	

39	सीएमईआरआई	अरूण, आरके	लैब ऑन ए चिप; 2014, <mark>वॉल्यूम 14,</mark> आईएसएस 10, पीपी 1661-1664	6.115
40	एनएएल	आसी, जे	एस्ट्रोफिजिकल जर्नल; 2014, वॉल्यूम 785, आईएसएस 2, पीपी 119-	5.993
41	सीएमईआरआई	लोहा, सी	रिन्यूवेबल एंड सस्टेनेबल एनर्जी रिव्यूज; 2014, वॉल्यूम 40, पीपी 688-715	5.901
42	एनएएल	प्रकाश, बीएस	रिन्यूवेबल एंड सस्टेनेबल एनर्जी रिव्यूज; 2014, वॉल्यूम 36, पीपी 149-179	5.901
43	एनईईआरआई	मोरोन, ए	रिन्यूवेबल एंड सस्टेनेबल एनर्जी रिव्यूज; 2014, वॉल्यूम 37, पीपी 21-35	5.901
44	एनएएल	दास, टी	साइंटिफिक रिपोर्ट्स; 2014, वॉल्यूम 4, पीपी 5328-	5.578
45	एनएएल	नीजगोड़ा, एसआर	इंटरनेशनल जर्नल ऑव प्लास्टिसिटी; 2014, वॉल्यूम 56, पीपी 119-138	5.567
46	एनईईआरआई	एटकी, एटी	वॉटर रिसर्च; 2014, वॉल्यूम 49, पीपी 186-196	5.528
47	आईएमएमटी	नाले, डीबी	केटेलिसिस साइंस एंड टेक्नोलॉजी; 2014, वॉल्यूम 4, आईएसएस 6, पीपी 1608-1614	5.426
48	एनईईआरआई	गुंजी, टी	केटेलिसिस साइंस एंड टेक्नोलॉजी; 2014, वॉल्यूम 4, आईएसएस 5, पीपी 1436-1445	5.426
49	एनएमएल, सीसीएमबी	भट्टाचार्य, एस	जर्नल ऑव बायोमेडिकल नैनोटेक्नोलॉजी; 2014, वॉल्यूम 10, आईएसएस 5, पीपी 811-819	5.338
50	एनएएल	बार्शीलिया, एचसी	सोलर एनर्जी मैटिरियल्स एंड सोलर सेल्स; 2014, वॉल्यूम 130, पीपी 322-330	5.337

2014-15

सीएसआईआर प्रयोगशालाओं द्वारा क्षेत्र-वार प्रकाशन (श्रेष्ठ 50 शोध-पत्र)

सूचना विज्ञान जर्नल्स के इम्पेक्ट फैक्टर पर आधारित

	प्रयोगशाला	प्रथम लेखक	जर्नल्स	आईएफ-
क्र .सं.				2014
		ग्लोरी, एस	प्रीकैम्ब्रीयन रिसर्च; 2014, वॉल्यूम 249, पीपी 229-	
1	सीएसआईआर-4पीआई	Wild, VI	246	5.664
	(II) (I on goil () Hong		210	0.001
2	सीएसआईआर-4पीआई	गोस्वामी, पी	साइंटिफिक रिपोर्ट्स; 2014, वॉल्यूम 4, पीपी 6532-	5.578
3	सीएसआईआर-4पीआई	रमेश, केवी	साइंटिफिक रिपोर्ट्स; 2014, वॉल्यूम 4, पीपी 4071-	5.578
3	रारिराजाञ्चलार-मनाजाञ्	रगरा, प्राचा	राज्ञितान्यगर्याद्रा, 2014, पारवूरा 4, पापा 4071-	3.376
		प्रशांत गोस्वामी	क्लाइमेट डायनेमिक्स; 2014, वॉल्यूम ऑनलाइन,	
4	सीएसआईआर-4पीआई		पीपी -	4.673
		मंधेरे, ए	एक्सपर्ट ओपिनियन ऑन द रेपियुटिक पेटेंट्स; 2014,	
5	यूआरडीआ ई पी	444, 4	वॉल्यूम 24, आईएसएस 12, पीपी 1287-1310	4.297
5	यूजारडाजाञ्चा		पारयून 24, आइर्सर्स 12, पापा 1207-1310	4.297
		गोस्वामी, पी	जर्नल ऑव जिओफिजिकल रिसर्चएटमॉस्फियर-;	
6	सीएसआईआर-4पीआई		2014, वॉल्यूम 119, आईएसएस 1, पीपी 10-22	3.426
		वरनेंट, पी	जर्नल ऑव जिओफिजिकल रिसर्चसॉलिड- अर्थ;	
		परनट, पा	2014, वॉल्यूम 119, आईएसएस 8, पीपी 6558-	
7	सीएसआईआर-4पीआई		6571	3.426
,	ताएतजाङ्जार-4पाजाङ्		6571	3.420
	सीएसआईआर-4पीआई,	गोस्वामी, पी	प्लास वन; 2014, वॉल्यूम 9, आईएसएस 6, पीपी	
8	आईआईसीटी		ई99867-	3.234
	सीएसआईआर-4पीआई,		T	
0		लौडरडेल, जेएम	मलेरिया जर्नल; 2014, वॉल्यूम 13, पीपी 310-	0.400
9	आईआईसीटी			3.109
		शशिकांत, के	जर्नल ऑव हाइड्रो <mark>लॉजी; 2014,</mark> वॉल्यूम 519, पीपी	
10	सीएसआईआर-4पीआई		3163-3177	3.053
			:0 2 40 0 :	
		पटेल, एस	एडवांसिस इन प्रोटीन कैमिस्ट्री एंड स्ट्रक्चरल	
4.4	n ranfunda da d		बायोलॉजी, वॉल्यूम 94; 2014, वॉल्यूम 94, पीपी	2.000
11	एनआईएसटीएडीएस		39-75	3.036
		खरबंदा, सी	बायोआर्गेनिक एंड मेडिसिनल केमिस्ट्री; 2014,	
12	यूआरडीआईपी		वॉल्यूम 22, आईएसएस 21, पीपी 5804-5812	2.793

		जेडे, एस	जर्नल ऑव जिओडेसी; 2014, वॉल्यूम 88,	
13	सीएसआईआर-4पीआई		आईएसएस 6, पीपी 539-557	2.699
		तिवारी, एम	फिजिकल रिव्यू ई; 2014, वॉल्यूम 90, आईएसएस 6,	
14	सीएसआईआर-4पीआई		पीपी 62202-	2.288
	एनआईएससीएआईआर,	प्रताप, जी	साइंटोमिट्रिक्स; 2014, वॉल्यूम 98, आईएसएस 2,	
15	एनआईआईएसटी		पीपी 1421-1422	2.183
		मनीषा, एम	साइंटोमिट्रिक्स; 2014, वॉल्यूम 98, आईएसएस 2,	
16	एनआईएससीएआईआर		पीपी 1101-1111	2.183
		श्रीवत्स, एसवी	साइंटोमिट्रिक्स; 2014, वॉल्यूम 101, आईएसएस 3,	
17	एनआईएसटीएडीएस		पीपी 1941-1954	2.183
		बासु, ए	साइंटोमिट्रिक्स; 2014, वॉल्यूम 100, आईएसएस 2,	
18	एनआईएसटीएडीएस		पीपी 531-539	2.183
		गर्ग, केसी	साइंटोमिट्रिक्स; 2014, वॉल्यूम 98, आईएसएस 3,	
19	एनआईएसटी <mark>एडीएस</mark>		पीपी 1771-1783	2.183
		अलहैदर, आई	साइंटोमिट्रिक्स; 2014, वॉल्यूम 98, आईएसएस 1,	
20	एनआईएसटीएडीएस		पीपी 157-171	2.183
		चवाण, एसआर	मालिक्युलर डायवर्सिटी; 2014, वॉल्यूम 18,	
21	यूआरडीआईपी		आईएसएस 4, पीपी 853-863	1.896
		परवेज, आईए	नेचुरल हजार्डस; 2014, वॉल्यूम 71, आईएसएस 1,	
22	सीएसआईआर-4पीआई		पीपी 549-562	1.719
		देवसेना, सीक	इंटरनेशनल जर्नल ऑव रिमोट सेंसिंग; 2014, वॉल्यूम	
23	सीएसआईआर-4पीआई		35, आईएसएस 14, पीपी 5448-5458	1.652
		गांगुली, एनके	बायोमेड रिसर्च इंटरनेशनल; 2014, वॉल्यूम , पीपी	
24	सीएसआईआर-4पीआई		524785-	1.579
		शशिकांत, के	एटमोस्फेरिक साइंस लेटर्स; 2014, वॉल्यूम 15,	
25	सीएसआईआर-4पीआई		आईएसएस 2, पीपी 79-85	1.521
		हैदर, एस	मेडिसिनल केमिस्ट्री रिसर्च; 2014, वॉल्यूम 23,	
26	यूआरडीआईपी		आईएसएस 9, पीपी 4250-4268	1.402
		कुमार, वीए	आईईईई कम्युनिकेशन्स लेटर्स; 2014, वॉल्यूम 18,	
27	सीएसआईआर-4पीआई		आईएसएस 12, पीपी 2109-2112	1.268

		गोस्वामी, पी	करंट साइंस; 2014, वॉल्यूम 107, आईएसएस 6,	
28	सीएसआईआर-4पीआई		पीपी 1013-1019	0.926
		गोस्वामी, पी	करंट साइंस; 2014, वॉल्यूम 106, आईएसएस 4,	
29	सीएसआईआर-4पीआई		पीपी 552-557	0.926
		मुकुल, एम	करंट साइंस; 2014, वॉल्यूम 106, आईएसएस 2,	
30	सीएसआईआर-4पीआई		पीपी 198-210	0.926
		जेना, टी	करंट साइंस; 2014, वॉल्यूम 107, आईएसएस 5,	
31	एनआईएससीएआईआर		पीपी 761-767	0.926
		जेना, टी	करंट साइंस; 2014, वॉल्यूम 106, आईएसएस 9,	
32	एनआईएससीएआईआर		पीपी 1190-1195	0.926
		पाठक, एम	करंट साइंस; 2014, वॉल्यूम 106, आईएसएस 7,	
33	एनआईएससीएआईआर		पीपी 964-971	0.926
		गर्ग, केसी	करंट साइंस; 2014, वॉल्यूम 107, आईएसएस 6,	
34	एनआईएसटी <mark>एडीएस</mark>		पीपी 965-970	0.926
		श्रीनिवास, एस	जर्नल ऑव पोरस मीडिया; 2014, वॉल्यूम 17,	
35	सीएसआईआर-4पीआई		आईएसएस 11, पीपी 953-967	0.807
		भारती, के ए	इंडियन जर्नल ऑव ट्रेडिशनल नॉलेज; 2014, वॉल्यूम	
36	एनआईएससीएआईआर		13, आईएसएस <mark>3, पीपी 6</mark> 00-605	0.411
		प्रताप, जी	जर्नल ऑव एसोसिएशन फॉर इंफॉर्मेशन साइंस एंड	
0.7	एनआईएससीएआईआर,		टेक्नोलॉजी; 2014, वॉल्यूम 65, आईएसएस 2, पीपी	0
37	एनआईआईएसटी		426-427	0
		प्रताप, जी	जर्नल ऑव एसोसिएशन फॉर इंफॉर्मेशन साइंस एंड	
38	एनआईएससीएआईआर, एनआईआईएसटी		टेक्नोलॉजी; 2014, वॉल्यूम 65, आईएसएस 5, पीपी 1076-1078	0
	, , , , , , , , , , , , , , , , , , , ,			
	एनआईएससीएआईआर,	प्रताप, जी	जर्नल ऑव एसोसिएशन फॉर इंफॉर्मेशन साइंस एंड टेक्नोलॉजी; 2014, वॉल्यूम 65, आईएसएस 7, पीपी	
39	एनआईआईएसटी		1506-1508	0
		प्रताप, जी	जर्नल ऑव एसोसिएशन फॉर इंफॉर्मेशन साइंस एंड	
	एनआईएससीएआईआर,	,	टेक्नोलॉजी; 2014, वॉल्यूम 65, आईएसएस 1, पीपी	
40	एनआईआईएसटी		214-214	0

2014-15

सीएसआईआर प्रयोगशालाओं द्वारा क्षेत्र-वार प्रकाशन (श्रेष्ठ 50 शोध-पत्र) भौतिक विज्ञान

जर्नल्स के इम्पेक्ट फैक्टर पर आधारित

क्र .सं.	प्रयोगशाला	प्रथम लेखक	जर्नल्स	आईएफ-201
1	एनपीएल	पात्रा, ए	अकाउंट्स ऑफ केमिकल रिसर्च; 2014, वॉल्यूम 47,	22.323
			आईएसएस 5, पीपी 1465-1474	
		3		12.112
2	एनपीएल	लाई, एलएफ	जर्नल ऑव द अमेरिकन कैमिकल सोसाइटी; 2014,	12.113
			वॉल्यूम 136, आईएसएस 15, पीपी 5591-5594	
3	एनपीएल	लव, जेए	जर्नल ऑव द अमेरिकन कैमिकल सोसाइटी; 2014,	12.113
			वॉल्यूम 136, आईएसएस 9, पीपी 3597-3606	
4	एनआईओ	चैतन्य, एवीएस	बुलेटिन ऑव दी अमेरिकन मीटिओरोलॉजीकल सोसाइटी;	11.808
·	,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2014, वॉल्यूम 95, आईएसएस 12, पीपी 1897+	
			2011, 11 2100, 212, 11112	
5	एनआईओ	गोमेस, एचडी	नेचर कम्युनिकेशन्स; 2014, वॉल्यूम 5, पीपी 4862-	11.47
6	एनजीआरआई	गुप्ता, एच	गोडवाना रिसर्च; 2014, वॉल्यूम 25, आईएसएस 1,	8.235
			पीपी 204-213	
7	एनपीएल	गौड़, ए	प्रोग्रेस इन फोटोवॉल्टाइक्स; 2014, वॉल्यूम 22,	7.584
·	, ,	,	आईएसएस 9, पीपी <mark>937-948</mark>	
8	एनपीएल, सीएसआईआर-	शर्मा, आर	जर्नल ऑव मैटिरियल कैमिस्ट्रिग ए 2014, वॉल्यूम 2,	7.443
0		राना, जार	आईएसएस 39, पीपी 16669-16677	7.443
	लयमुख्या		आइएसएस ५७, पापा १०००७-१००//	
9	एनपीएल	कुमार, ए	जर्नल ऑव मैटिरियल कैमिस्ट्रि ए 2014, वॉल्यूम 2,	7.443
			आईएसएस 39, पीपी 16632-16639	
10	एनपीएल	मिश्रा, एम	जर्नल ऑव मैटिरियल्स कैमिस्ट्रि ए 2014, वॉल्यूम 2,	7.443
			आईएसएस 32, पीपी 13159-13168	
11	एनपीएल	मिश्रा, डीके	जर्नल ऑव मैटिरियल्स कैमिस्ट्रि ए 2014, वॉल्यूम 2,	7.443
			आईएसएस 30, पीपी 11913-11921	
12	एनपीएल	कुमार, पीएन	जर्नल ऑव मैटिरियल्स कैमिस्ट्रि ए 2014, वॉल्यूम 2,	7.443
			आईएसएस 25, पीपी 9771-9783	7.440
13	एनपीएल	भारद्वाज, ए	जर्नल ऑव मैटिरिय <mark>ल्स कैमिस्ट्रिी ए 2014, वॉल्यूम 2,</mark> आईएसएस 48, पीपी 20980-20989	7.443
14	एनपीएल	त्यागी, के	जर्नल ऑव मैटिरियल्स कैमिस्ट्रि ए 2014, वॉल्यूम 2,	7.443
17	7 131/61	(11 11, 11/	आईएसएस 38, पीपी 15829-15835	7.773
15	एनपीएल	गृप्ता, टीके	जर्नल ऑव मैटिरियल्स कैमिस्ट्री ए 2014, वॉल्यूम 2,	7.443
		3	आईएसएस 12, पीपी 4256-4263	
16	एनपीएल	सिंह , एपी	जर्नल ऑव मैटिरियल्स कैमिरिट्री ए 2014, वॉल्यूम 2,	7.443
			आईएसएस 10, पीपी 3581-3593	

17	सीएसआईओ	मिश्रा, एम	एप्लाइड केटेलिसिस बीयरनमेंटलइन्वा-; 2014, वॉल्यूम 150, पीपी 605-611	7.435
18	एनपीएल	अली, एम	नैनोस्केल; 2014, वॉल्यूम 6, आईएसएस 22, पीपी	7.394
10	7.141761	olen, Çi	13958-13969	7.554
19	एनपीएल	चौधरी, ए	नैनोस्केल; 2014, वॉल्यूम 6, आईएसएस 14, पीपी	7.394
			7743-7756	
20	एनपीएल	श्मिट, एसडब्ल्यू	नैनोस्केल; 2014, वॉल्यूम 6, आईएसएस 14, पीपी	7.394
		, , ,	7897-7902	
21	एनपीएल	कुमार, ए	नैनोस्केल; 2014, वॉल्यूम 6, आईएसएस 14, पीपी	7.394
	, ,	3 " ", "	8192-8198	
22	एनपीएल	गृप्ता, टीके	नैनोस्केल; 2014, वॉल्यूम 6, आईएसएस 2, पीपी 842-	7.394
	7 1-11/41	3 (11, 014)	851	7.554
00	एनपीएल			7.394
23	एनपाएल	कुमार, ए	नैनोस्केल; 2014, वॉल्यूम 6, आईएसएस 2, पीपी	7.394
		<u> </u>	1064-1070	
24	एनपीएल	सिंह, जे	नैनोस्केल; 2014, वॉल्यूम 6, आईएसएस 2, पीपी	7.394
			1195-1208	
25	एनपीएल	केडावत, जी	एसीएस एप्लाइड मैटिरियल्स एंड इंटरफेसिस; 2014,	6.723
			वॉल्यूम ६, आईएसएस 11, पीपी 8407-8414	
26	एनपीएल	कुमार, पी	एसीएस एप्लाइड मैटिरियल्स एंड इंटरफेसिस; 2014,	6.723
			वॉल्यूम 6, आईएसएस 7, पीपी 5281-5289	
27	एनपीएल	मंडल, के	एसीएस एप्लाइड मैटिरियल्स एंड इंटरफेसिस; 2014,	6.723
			वॉल्यूम 6, आईएसएस 4, पीपी 2516-2527	
28	सीईईआरआई	इस्लाम, टी	आईईईई ट्रांजेक्शन्स ऑन इंड्रस्ट्रियल इलेक्ट्रॉनिक्स;	6.498
			2014, वॉल्यूम 61, आईएसएस 10, पीपी 5599-5605	
29	एनपीएल	रेज़ा, केक	बायोसेंसर्स एंड बायोइलेक्ट्रोनिक्स; 2014, वॉल्यूम 62,	6.409
			पीपी 47-51	
30	एनपीएल	पांडे, सीएम	बायोसेंसर्स एंड बायोइलेक्ट्रोनिक्स; 2014, वॉल्यूम 61,	6.409
			पीपी 328-335	
31	एनपीएल	हैदर, एसए	स्पेस साइंस रिव्यूज; 2014, वॉल्यूम 182, आईएसएस	6.283
			42008, पीपी 19-84	
32	एनपीएल	कुमार, ए	जर्नल ऑव पावर सोर्सेस; 2014, वॉल्यूम 246, पीपी	6.217
		3 , ,	800-807	
33	एनपीएल	कुमार, वी	कार्बन; 2014, वॉल्यूम 80, पीपी 290-304	6.196
34	एनपीएल	कामालिया, आर	कार्बन; 2014, वॉल्यूम 78, पीपी 147-155	6.196
35	एनपीएल	गुप्ता, आर	कार्बन; 2014, वॉल्यूम <mark>66, पीपी 724-72</mark> 6	6.196
36	एनपीएल	धनखर, एम	रिन्यूवेबल एंड सस्टेनेबल एनर्जी रिव्यूज; 2014, वॉल्यूम	5.901
	, ,	, , .	40, पीपी 214-223	
37	एनजीआरआई	माणिक्याम्बा, सी	प्रीकेम्ब्रियन रिसर्च; 2014, वॉल्यूम 252, पीपी 1-21	5.664
38	एनजीआरआई	बोराह, के	प्रीकेम्ब्रियन रिसर्च; 2014, वॉल्यूम 246, पीपी 16-34	5.664
39	एनजीआरआई	मोहन, एमआर	प्रीकेम्ब्रियन रिसर्च; 2014, वाल्यून 243, पीपी 197-220	5.664
	एनपीएल			
40	एनपाएल	अली, एमए	एनेलिटिकल कैमिस्ट्री; 2014, वॉल्यूम 86, आईएसएस 3, पीपी 1710-1718	5.636
11	एनजीआरआई	المناح التال		5.578
41	· ·	फेरैंट, एस	, ,	
42	एनपीएल	·	वर्मा, एम साइंटिफिक रिपोर्ट्स; 2014, वॉल्यूम 4, पीपी 7257-	
43	एनपीएल	बिस्कारस, जे	साइंटिफिक रिपोर्ट्स; 2014, वॉल्यूम 4, पीपी 6788-	5.578

44	सीएसआईओ	अरोड़ा, एस	जर्नल ऑव बायोमेडिकल नैनो टेक्नोलॉजी; 2014,	5.338
			वॉल्यूम 10, आईएसएस 12, पीपी 3601-3609	
45	सीएसआईओ	सिंह, एस	सोलर एनर्जी मैटिरियल्स एंड सोलर सेल्स; 2014,	5.337
			वॉल्यूम 128, पीपी 231-239	
46	एनपीएल	गोंडोनी, पी	सोलर एनर्जी मैटिरियल्स एंड सोलर सेल्स; 2014,	5.337
			वॉल्यूम 128, पीपी <mark>248-253</mark>	
47	एनपीएल	रेड्डी, बीएन	सोलर एनर्जी मैटिरियल्स एंड सोलर सेल्स; 2014,	5.337
			वॉल्यूम 121, पीपी 69-79	
48	एनआईओ	सुनील, वी	इन्वायरनमेंटल साइंस एंड टेक्नोलॉजी; 2014, वॉल्यूम	5.33
			48, आईएसएस 19, पीपी 11343-11351	
49	एनआईओ	वीनसेंट, ईएम	जर्नल ऑव एंडवांसिस इन मॉडलिंग अर्थ सिस्टम्स;	4.922
			2014, वॉल्यूम 6, आईएसएस 3, पीपी 680-699	
50	एनआईओ	सेमसोन, जी	जर्नल ऑव एंडवांसिस इन मॉडलिंग अर्थ सिस्टम्स;	4.922
			2014, वॉल्यूम 6, आईएसएस 3, पीपी 700-722	

2014-15

संलग्नक-IV

सीएसआईआर सोसाइटी के सदस्य

1.	भारत के माननीय प्रधानमंत्री	अध्यक्ष
••	सीएसआईआर के अध्यक्ष का कार्यालय	ole 151
	प्रधानमंत्री <mark>कार्यालय</mark>	
	कमरा नं.148-बी, साउथ ब्लॉक	
	नई दि ल्ली - 110 011	
2.	माननीय विज्ञान एवं प्रौद्योगिकी तथा पृथ्वी विज्ञान मंत्री	उपाध्यक्ष
	उपाध्यक्ष, सीएसआईआर, उपाध्यक्ष, सीएसआईआर का कार्यालय	
	वैज्ञानिक तथा औद्योगिक अनुसंधान परिषद	
	अनुसंधान भवन, २, रफी मार्ग	
	नई दिल्ली-110001	
3.	माननीय वित्त मंत्री	सदस्य
	वित्त मंत्रालय	
	कमरा नं.132-सी,	
	नॉर्थ ब्लॉक	
	नई दि <mark>ल्ली - 110 011</mark>	
4.	माननीय वाणिज्य एवं उद्योग मंत्री	सदस्य
	वाणिज् <mark>य एवं उद्योग मंत्रा</mark> लय	
	कमरा नं.45	
	उद्योग भवन	
	नई दि <mark>ल्ली - 110 011</mark>	
5.	डॉ.सैम पित्रोदा	सदस्य
	अध्यक्ष, नेशनल इनोवेशन काउंसिल एवं लोक सूचना	
	अवसंरचना तथा नवाचार पर भारत के प्रधान मंत्री के सलाहकार	
	कमरा नं.125, योजना आयोग	
	योजना भवन, संसद मार्ग,	
	नई दिल्ली-110001	
6.	डॉ.के.कस्तूरीरंगन	सदस्य
	सदस्य (एसएण्डटी), योजना आयोग	
	योजना भवन, संसद मार्ग	
	नई दिल्ली — 110 001	
7.	प्रो.एम एम शर्मा, एफआरएस	सदस्य
	प्रख्यात रसायन वैज्ञानिक एवं	
	पूर्व निदेशक,	
	यूनीवर्सिटी <mark>डिपार्टमेंट</mark> ऑव कैमिकल टेक्नोलॉजी	
	2/3, जसवन्त बाग़, एके बरली के पीछे	
	वीएन पूरव मार्ग	
	मुंबई — 400071 (महाराष्ट्र)	
8.	प्रो.राघवेंद्र गदागकर	सदस्य
-	अध्यक्ष	
	सलाहकार बोर्ड, सीएसआईआर एवं प्रोफेसर	
	भारतीय विज्ञान संस्थान, बेंगलूरु-560012	

9.	प्रो.गौतम बरूआ	ਸ਼ਟਹਹਾ
J .	मेंटर डायरेक्टर	सदस्य
	भारतीय <mark>सूचना प्रौद्यो</mark> गिकी संस्थान	
	अम्बारी, जीएनबी रोड	
	(असम टेक्सटाइल इंस्टीट्यूट कैम्पस)	
	गुवाहटी — 781001	
10.	डॉ. सुरिन्दर कपूर	सदस्य
	फाउंडर चेयरमैन	
	द सोना ऑटो कॉम्प ग्रुप	
	38/6, एनएच-8,	
	दिल्ली-जयपुर रोड, गुड़गांव-122002	
11.	डॉ. प्रीथा रेड्डी	सदस्य
	प्रबंध निदेशक	
	अपोलो हास्पिटल्स	
	21, ग्रीम्स लेन, चेन्नै-600006	
12.	सुश्री उमा रेड्डी	सदस्य
	प्रबंध निदेशक	
	मेसर्स हाईटेक मेग्नेटिक्स एण्ड इलैक्ट्रॉनिक्स प्रा.लि.	
	नं.1 एवं 2, एमईएस रिंग रोड	
	शारदाम्बानगर, जालाहल्ली	
	बेंगलूरु-560013	
13.	श्री टीवी मोहनदास पाई	सदस्य
	अध्यक्ष	
	मनीपाल ग्लोबल एजूकेशन सर्विसिज प्रा.लि.	
	मनीपाल एजूकेशन एण्ड मेडिकल ग्रुप इन्टरनेशनल प्रा.लि.	
	न.70, ग्रेस टावर्स, तीसरा तल,	
	मिलर्स रोड, बेंगलूरु-560008	
14.	श्री चंद्र शेखर वर्मा	सदस्य
	अध्यक्ष	
	स्टील अथॉरिटी ऑव इंडिया लिमिटेड	
	कॉर्पोरेट ऑफिस, इस्पात भवन,	
	लोदी रोड, नई दिल्ली 110003	
15.	श्री सुधीर वासुदेव	सदस्य
	अध्यक्ष एवं प्रबंध निदेशक	
	ऑयल एण्ड नेचुरल गैस कॉपॉरेशन लिमिटेड	
	जीवन भारती, छठी मंजिल, टावर-II	
	124, इंदिरा चौक, नई दिल्ली-110001	
16.	प्रो.सुधीर कुमार सोपोरी	सदस्य
	कुलपति	
	जवाहर लाल नेहरू विश्वविद्यालय, नया परिसर	
47	नई दिल्ली-110067	
17.	प्रो.आर.कुमार	सदस्य

	मानद प्रोफेसर	
	रसायन अभियांत्रिकी विभाग	
	भारतीय विज्ञान संस्थान	
	बेंगलूरु-560012	
18.	प्रो.मंजू बंसल	सदस्य
	प्रोफेसर	
	मॉलिकुलर बायोफिजिक्स यूनिट	
	भारतीय विज्ञान संस्थान	
	बेंगलूरु-560012	
19.	प्रो.जावेद इकबाल	सदस्य
	कार्यकारी निदेशक एवं अध्यक्ष तथा संस्थापक	
	कॉस्मिक डिस्कवरीज़	
	डॉ.रेड्डीज इंस्टीट्यूट ऑव लाइफ सांइसेज़	
	हैदराबाद विश्वविद्यालय परिसर	
	गच्चीबॉली, हैदराबाद-500046	
20.	सचिव	सदस्य
	स्वास्थ्य अनुसंधान विभाग	
	स्वास्थ्य एवं परिवार कल्याण मंत्रालय एवं	
	महानिदेशक	
	भारतीय चिकित्सा अनुसंधान परिषद	
	वी.रामालिंगास्वामी भवन	
	अंसारी नगर, नई दिल्ली-110029	
21.	सचिव	सदस्य
	औद्योगिक नीति एवं संवर्द्धन विभाग	
	कमरा नं.157, उद्योग भवन	
	नई दिल्ली-110011	
22.	सचिव	सदस्य
22.	नवीन और नवीकरणीय ऊर्जा मंत्रालय	(14(4)
	ब्लॉक सं.14, सीजीओ कॉम्प्लेक्स, लोदी रोड,	
	नई दिल्ली 110003	
23.	मध्य १५७७। । १०००	шаш
23.	पृथ्वी विज्ञान मंत्रालय	सदस्य
	पृथ्वी भवन, ब्लॉक सं.12	
	सीजीओ कॉम्प्लेक्स, लोदी रोड	
	नई दिल्ली-110003	
24.	महानिदेशक [#]	सदस्य
	वैज्ञानिक तथा औद्योगिक अनुसंधान परिषद	
	अनुसंधान भवन,	
	2, रफी मार्ग, नई दिल्ली — 110001	
25	सचिव (व्यय)*	सदस्य
	वित्त मंत्रालय	
	नॉर्थ ब्लॉक	
	नई दिल्ली-110001	
26	प्रो.आर.सी.बुधानी*	सदस्य
	। पा अर सा बंधानार	तदस्य

	2014-15	
	सीएसआईआर-राष्ट्रीय भौतिक प्रयोगशाला (एनपीएल)	
	डॉ.केएस कृष्णन मार्ग	
	नई दि <mark>ल्ली-110012</mark>	
27.	डॉ.एस.डब्लू.ए.नकवी *	सदस्य
	निदेशक	
	सीएसआईआर-राष्ट्रीय समुद्रविज्ञान संस्थान (एनआईओ)	
	दॉना पॉला	
	गोवा-403004	
28.	डॉ.कृष्ण एल्ला*	सदस्य
	अध्यक्ष एवं प्रबंध निदेशक	
	भारत बायोटेक इंटरनेशनल लिमि.	
	जिनोम वैली शामीरपेट	
	हैदराबाद-500078	
29.	अध्यक्ष*	सदस्य
	कोल इण्डिया लिमिटेड	
	कोल भवन, 10, नेता जी सुभाष रोड	
	कोलकाता — 700001	
30.		Jen
30.	प्रो.आलोक भट्टाचार्य*	सदस्य
	प्रोफेसर	
	स्कूल ऑव लाइफ साइंसेज़	
	कमरा नं.117, जवाहर लाल नेहरू विश्वविद्यालय (जेएनयू)	
	न्यू महरौली रोड	
	नई दि ल्ली-110067	
31.	प्रो.ए.के.सूद <mark>*</mark>	सदस्य
	प्रोफेसर	
	भौतिकी विभाग	
	भारतीय विज्ञान संस्थान	
	बेंगलूरु-560012	
32.	प्रो.भास्कर राममूर्ति*	सदस्य
	निदेशक	
	भारतीय प्रौद्योगिकी संस्थान, मद्रास	
	चेन्नै-600036	
33.	सचिव*	सदस्य
	विज्ञान और प्रौद्योगिकी विभाग	
	प्रौद्योगिकी भवन, न्यू महरौली रोड	
	नई दिल्ली-110016	
34.	सचिव*	सदस्य
	जैव प्रौद्योगिकी विभाग	
	ब्लॉक-२, 7वां तल, सीजीओ कॉम्प्लेक्स	
	लोदी रोड	
	नई दिल्ली- <u>110003</u>	
		

[#]अध्यक्ष, सीएसआईआर शासी निकाय

^{*}सीएसआईआर शासी निकाय के सदस्य

2014-15

संलग्नक-V

31.03.2015 को लम्बित एटीएन का विवरण

क्र.सं.	रिपोर्ट की संख्या और वर्ष	उन पैराओं/पीए	ऐसे पैरा/पीएसी रिपोर्टों के ब्यौरे जिनके एटीएन लंबित हैं			
		रिपोर्टों की संख्या	पहली बार में भी	भेजे गए लेकिन कुछ	एटीएन की संख्या	
		जिन पर एटीएन की	मंत्रालय द्वारा नहीं	टिप्पणियों सहित	जिनकी लेखापरीक्षा	
		रिपोर्ट वित्त	भेजे गए एटीएन की	लौटा दिए गए	द्वारा अंतिम जांच की	
		मंत्रालय की	संख्या	एटीनएन की संख्या	जा चुकी है परंतु	
		मॉनीटरिंग सैल में		और मंत्रालय द्वारा	मंत्रालय द्वारा अभी	
		जमा कराई गई है		उन्हें पुन: प्रस्तुत	तक प्रस्तुत नहीं किए	
				करने की लेखापरीक्षा	गए हैं	
				प्रतीक्षा कर रहा है		
1.	वर्ष 1996 से 2003 तक (कुल	शून्य	शून्य	5	शून्य	
	= 9 पैरा)					
2.	2005 की रिपोर्ट 5 (कुल =	शून्य	शून्य	1	शून्य	
	1 पैरा)					
3.	2007 की रिपोर्ट <mark>2 (टीए) (क</mark> ुल	शून्य	शून्य	1	शून्य	
	= 1 पैरा)					
4.	2008-09 की रिपोर्ट 16	शून्य	शून्य	1	2	
	(कुल = 3 पैरा)					
5.	2011-12 की रिपोर्ट 16	शून्य	शून्य	शून्य	1	
	(कुल = 1 पैरा)					
6.	2013 की रिपोर्ट <mark>22 (कुल =</mark> 2	शून्य	1	शून्य	शून्य	
	पैरा)					
7.	2013 की रिपोर्ट 29 (कुल = 1	शून्य	शून्य	शून्य	शून्य	
	पैरा)					
	कुल = 18 पैरा		1	8	3	

नोट: 6 एटीएन पीडीए (एसडी) के कार्यालय में दिनांक 31/03/2015 को पुनरीक्षण टिप्पणियों हेतु लंबित पड़े थे।

वर्ष 2014-15 के दौरान कोई महत्वपूर्ण लेखा परीक्षा प्रेक्षण नहीं था।

2014-15

संलग्नक-VI

स्वीकृत परियोजनाओं की सूची

क बारहवीं पंचवर्षीय योजना परियोजनाएं :

नोडल प्रयोगशाला		परियोजना का नाम
समूह क्षेत्र: जैव विज्ञान		
सीएसआईआर-सीडीआरआई	1.	फेक्टर्स गवर्निंग कॉम्पीटेंट गैमीट प्रोडक्शन एंड रि-प्रोडेक्टिव डिसफंक्शन
		(PROGRAM)
सीएसआईआर-सीडीआरआई	2.	टुवर्ड्स हॉलिस्टिक अंडरस्टेंडिंग ऑव कॉम्प्लेक्स डिजीजिस : अनरेवलिंग द थ्रेड्स
		ऑव कॉम्प्लेक्स डिजीजिस (THUNDER)
सीएसआईआर-सीडीआरआई	3.	न्यू अप्रोचेस टूवर्ड्स अंडरस्टेंडिंग ऑव डिजीज डायनेमिक्स एंड टू एक्सेलरेट ड्रग
		डिस्कवरी (UNDO)
सीएसआईआर-सीडीआरआई	4.	इमर्जिंग एंड रि-इमर्जिंग चे <mark>लेंजिज़ इन इन्फेक्शस</mark> डिजीजिस : सिस्टम्स बेस्ड ड्रग
		डिजाइन फॉर इन्फेक्शस <mark>डिजीजिस (SPIen</mark> DID)
सीएसआईआर-सीएफटीआरआई	5.	न्यू इनीशिएटिव्स टू बूस्ट एग्रीकल्चर प्रोडिक्टविटी थ्रू मैक्सिमाइजिंग प्री एंड पोस्ट-
		हार्वेस्ट यील्ड्स (AGROPATHY)
सीएसआईआर-एनबीआरआई	6.	बायोप्रोस्पेक्शन ऑव प्लांट रिसोर्सेस एंड अदर नेचुरल प्रोडक्ट्स (BioprosPR)
सीएसआईआर-एनबीआरआई	7.	जिनोमिक्स ऑव मेडिसिनल प्लांट्स एंड एग्रोनॉमिकली इम्पोटेंट ट्रेट्स (PlaGen)
सीएसआईआर-आईआईआईएम	8.	मेडिसिनल कैमेस्ट्री फॉर स्टेम <mark>सैल बायोल</mark> ॉजी एंड रिजेनेरेटिव मेडिसिन
		(MEDCHEM)
सीएसआईआर-आईएचबीटी	9.	प्लांट डाइवर्सिटी: स्टडींग एडेप्टेशन बायोलॉजी एंड अंडरस्टेंडिंग/एक्सप्लॉएटिंग
		मेडिसिनली इम्पॉर्टेंट प्लां <mark>ट्स फॉर यूजफुल बायोएक्टि</mark> व्स (SIMPLE)
सीएसआईआर-आईएचबीटी	10.	इंट्रोडक्शन, डोमेस्टीकेशन, इम्प्रूवमेंट एंड कल्टीवेशन ऑव इकोनॉमिकली इम्पोटेंट
		प्लांट्स (AGTEC)
सीएसआईआर-आईआईटीआर	11.	इंटीग्रेटिड नेक्स्टजेन अप्रोचिज इन हैल्थ डिजीज एंड एनवॉयरनमेंटल टॉक्सीसिटी
		(INDEPTH)
सीएसआईआर-आईआईटीआर	12.	नेनौमैटेरियल्सः एप्लीकेशन्स एंड इम्पेक्ट ऑन सेफ्टी, हैल्थ एण्ड एनवॉयरनमेंट
		(NanoSHE)
सीएसआईआर-आईआईसीबी	13.	अंडरस्टेंडिंग सुप्रा मालिक्यु <mark>लर इनसेम्बल्स एंड</mark> मशीन्स (UNSEEN)
सीएसआईआर-आईआईसीबी	14.	हॉस्ट इंटरैक्टम ऍनालिसिस : अंडरस्टेंडिंग द रोल ऑव होस्ट मालिक्यूल्स इन
		पैरासाइटिक इन्फेक्शन (HOPE)
सीएसआईआर-आईआईसीबी	15.	न्यूरोडिजेनरेटिव डिजीजिसः <mark>कॉजिज एंड कॉरेक्श</mark> न (miND)
सीएसआईआर-आईआईसीबी	16.	थेरेप्यूटिक्स ऑव क्रॉनिक ऑ <mark>ब्स्ट्रक्टिव पुलमनरी डिजीज (COPD)</mark> एंड रिलेटिड
		रेस्पिरेटरी डिस्ऑर्डर्स (TREAT)
सीएसआईआर-सीसीएमबी	17.	प्लांट — माइक्रोब एंड सॉयल इंन्टरेक्शन्स (PMSI)
सीएसआईआर-सीसीएमबी	18.	ऐपिजेनेटिक्स इन हेल्थ एण्ड डिजीज (EpiHeD)
सीएसआईआर-आईएमटीईसीएच	19.	मैन एज ए सुपरआर्गेनिज्म: अंडरस्टेंडिंग द ह्यूमन माइक्रोबायोम (HUM)

सीएसआईआर-आईएमटीईसीएच	20.	सेन्टर फॉर बायोथेरेप्यूटिक मालिक्यूल डिस्कवरी (BIODISCOVERY)
सीएसआईआर-आईएमटीईसीएच	21.	जिनोमिक्स एंड इन्फॉर्मेटिक्स <mark>सॉल्युशन्स फॉर इ</mark> न्टीग्रेटिंग बायोलॉजी (GENESIS)
सीएसआईआर-आईजीआईबी	22.	सेन्टर फॉर कार्डियोवस्कुलर एंड मेटाबॉलिक डिजीज रिसर्च (CARDIOMED)
सीएसआईआर-आईजीआईबी	23.	जीनोम डायनेमिक्स इन सेलुलर आर्गेनाइजेशन, डिफ्रेंनसिएशन एंड
		इनेनटिओस्टेसिस (GenCODE)
सीएसआईआर-आईजीआईबी	24.	सीएसआईआर-एनसीएल-आईजीआईबी जॉइंट रिसर्च इनिशिएटिव : इंटफेंसिंग
		कैमिस्ट्री एंड बायोलॉजी (CSIR-NCL-IGIB-JRI)
सीएसआईआर-मुख्यालय	25.	एस एंड टी इंटरवेंशंस टू कॉम्बेट मैलन्यूट्रिशन इन वूमन एंड चिल्ड्रन
सीएसआईआर-सीडीआरआई	26.	एनाबॉलिक स्केलेटल टार्गेट्स इन हेल्थ एंड इलनेस (ASTHI)
सीएसआईआर-सीएफटीआरआई	27.	वेलनेस थ्रू फूड्स एंड न्यूट्रास्यूटिकल्स (WELFO)
सीएसआईआर-सीआईएमएपी	28.	केमिकल बायोलॉजी ऑव ओसिमम एंड अदर एरोमेटिक प्लांटस (ChemBio)
सीएसआईआर-एनबी <mark>आरआई</mark>	29.	रूट बायोलॉजी (क्रॉस फ्लो ऑव टेक्नोलॉजी प्रोजेक्ट) (RootSF)
सीएसआईआर-आई <mark>आईएम</mark>	30.	नचरिंग ए न्यू पैन-सीएसआईआर ड्रग पाइप लाइन: हाई इनटेंसिटी प्रिक्लीनिकल,
		क्लीनिकल स्टडीज ऑ <mark>न लीड केंडीडेट्स (DPL</mark>)
सीएसआईआर-आईआईसीबी	31.	बायो-एनर्जेटिक डिस्ऑर्ड्स : ए मल्टी-मॉडल अप्रोच टू मॉनीटरिंग एंड मैनेजमेंट
		(BenD)
सीएसआईआर-सीसीएमबी	32.	कंजर्वेशन ऑव एंडेंजर्ड एनिमल्स ऑव इंडिया : मॉलीक्यूलर जेनेटिक्स एंड
		रिप्रोडक्शन एप्रोचेस (ConservE)
सीएसआईआर-सीसीएमबी	33.	बायोलॉजी ऑव एजिंग एंड ह्यूमन हेल्थ (BioAge)
सीएसआईआर-आईएचबीटी	34.	इस्टैब्लिशमेंट ऑफ सेंटर फार हाई एल्टीट्यूड बायोलॉजी)CeHAB(
सीएसआईआर-आईएमटीईसी <mark>एच</mark>	35.	मल्टीडायरेक्शनल अप्रोचिज फॉर मालिक्युलर एंड सिस्टम्स लेवल अंडरस्टेंडिंग
		ऑव रेगुलेटरी नेटवर्क्स <mark>इन पेथोजेनिक माइक्रोब</mark> ्स (INFECT)
सीएसआईआर-आईएमटीईसीएच	36.	ड्रग डिस्कवरी: बग्स टू <mark>ड्रग्स प्रोग्राम (BUGS TO DRUGS</mark>)
सीएसआईआर-आईजीआईबी	37.	वेलनेस जीनोमिक्स प्रोजेक्ट – अंडरस्टेंडिंग जीनोमिक सिग्नेचर्स ऑव हेल्दी लिविंग
		इन इंडियन पापुलेशन (WG 100)
सीएसआईआर- आईएचबीटी	38.	प्रोसेसिस एंड प्रोडक्ट्स फ्रॉम हिमालयन रीजन एंड देयर टॉक्सिकोलॉजिकल
		इवैल्यूएशन)PROMOTE (
सीएसआईआर-सीसीएमबी	39.	प्लांट ब्रीडिंग, जीनोमिक्स एंड <mark>बायोटेक्नोल</mark> ॉजी (PLOMICS)
सीएसआईआर-आईजीआईबी	40.	टुवर्ड्स अंडरस्टेंडिंग स्किन सैल होमियोस्टेसिस (TOUCH)
सीएसआईआर- आईजीआईबी	41.	इफेक्टिव एप्लीकेशन ऑफ कम्यूनिटी हैल्थ एफर्ट्स थ्रू न्यू एज, आई टी बेस्ड मोड्स
		(EACH-IT)
सीएसआईआर-सीएफटीआर <mark>आई</mark>	42.	लिपिडोमिक्स सेन्टर (LIPIC)
सीएसआईआर- आईएमटीईसी <mark>एच</mark>	43.	एक्सपेंशन एण्ड मॉडर्नाइज़ेशन <mark>ऑफ द माइक्रोबि</mark> यल टाइप कल्चर कलेक्शन एण्ड जीन
		बैंक (MTCC)
सीएसआईआर-आईजीआईबी	44.	विजुआलाइजेशन ऑव आर्गेनिज्म इन एक्शन (VISION)
सीएसआईआर- सीएफटीआरआई	45.	क्रिएशन ऑफ एडवांस्ड रि <mark>सर्च फैसिलिटी इन म</mark> ॉलिक्यूलर न्यूट्रिशन)Nutri-ARM(
सीएसआईआर-आईआईसीबी	46.	सीएसआईआर-मायो क्लीनिक कॉलेबोरेशन फॉर इनोवेशन एंड ट्रांसलेशनल रिसर्च
		(CKF)
		,

समूह क्षेत्र: रसायन विज्ञान		
सीएसआईआर-सीईसीआरआई	47.	मल्टीफंक्शनल इलेक्ट्रोड्स एंड <mark>इलेक्ट्रोलाइट्</mark> स फॉर फ्यूचर टेक्नोलॉजीज (MUTLIFUN)
सीएसआईआर- सीआईएमएफआर	48.	क्लीन कोल टेक्नोलॉजी (TapCoal)
सीएसआईआर-सीएलआरआई	49.	जीरो एमिशन रिसर्च इनिशिय <mark>टिव फॉर सॉलि</mark> ड वेस्टस फ्रोम लैदर)ZERIS(
सीएसआईआर-सीएसएमसीआरआई	50.	मेम्ब्रेन एंड एडज़ॉबेंट टेक्नोलॉजी प्लेटफॉर्म फॉर इफेक्टिव सेपरेशन ऑव गैसेज एंड लिक्विड्स (MATES)
सीएसआईआर-सीएसएमसीआरआई	51.	पोटासिक (K) फर्टिलाइजर टेक्नोलॉजी टू इम्पॉवर द नेशन (K-TEN)
सीएसआईआर-आईआईसीटी	52.	बायोकेटालिस्ट्स फॉर इंडस्ट्रियल एप्लीकेशन्स एंड ग्रीनर आर्गेनिक सिंथेसिस (BIAGOS)
सीएसआईआर-आईआईसीटी	53.	इनहेरंटली सेफर प्रेक्टिसिस फॉर इंडस्ट्रियल रिस्क रिडक्शन (INSPIRE)
सीएसआईआर-आईआईसीटी	54.	ऑर्गेनिक रिएक्शन इन जेनरेटिंग इनोवेटिव एंड नेचुरल स्केफ्फोल्ड्स (ORIGIN)
सीएसआईआर-आईआईसीटी	55.	नॉन-इनफ्रिंजिंग कैमिस्ट्री एंड इंजीनियरी फॉर फार्मास्युटिकल (NICE-P)
सीएसआईआर-आईआईसीटी	56.	मेटाबॉलिक प्रोफाइलिंग ऑव ह्युमन बॉडी फ्ल्युइड्स बाइ एमएस एंड एनएमआर (CMET)
सीएसआईआर-आईआईसीटी	57.	स्क्रीनिंग मालिक्यूल्स इन <mark>लीड एक्प्लोरेशन (SMiLE)</mark>
सीएसआईआर-आईआईसीटी	58.	डेवलपमेंट ऑव सस्टेनेबल प्रोसेसिस फॉर एडिबल ऑयल्स विद हैल्थ बेनीफिट्स फ्रॉम ट्रेडिशनल एंड न्यू रिसोर्सिज (PEOPLE HOPE)
सीएसआईआर-आईआईसीटी	59.	डेवलपमेंट ऑव सस्टेनेबल वेस्ट मैनेजमेंट टेक्नोलॉजीज़ फॉर कैमिकल एंड एलाइड इंडस्ट्रीज (SETCA)
सीएसआईआर- आईआईसीटी	60.	इंटेलिजेंट कोटिंग्स (IntelCoat)
सीएसआईआर-आईआईपी	61.	एनर्जी एफिशिएंट टेक्नोलॉजीज (E2++)
सीएसआईआर-आईआईपी	62.	बॉयोमास टू एनर्जी (BioEn)
सीएसआईआर-आईआईपी	63.	केटालिस्ट्स फॉर सस्टेनेबल एनर्जी (ECat)
सीएसआईआर-आईआईपी	64.	न्यू जनरेशन ल्युब्रिकेंट्स एंड एडिटिव्स (GenLube)
सीएसआईआर-आईआईपी	65.	रिसर्च इनिशिएटिव फॉर लो एमिशन्स (RILE)
सीएसआईआर- आईआईपी	66.	वेस्ट टू वेल्थ – वेस्ट प्लास्टिक्स)W2W(
सीएसआईआर-आईआईपी	67.	एडवांस्ड कार्बन मैटेरियल्स (AdCarbMate)
सीएसआईआर-आईआईपी	68.	सेंटर ऑव एक्सीलेंस फॉर एचआरडी इन हाइड्रोकार्बन
सीएसआईआर-एनसीएल	69.	हाइड्रोजन एनर्जी: ओवरकमिंग मैटेरियल्स चैलेंजिस इन पीईएमएफसी टुवर्ड्स जेनरेशन, सेपरेशन, स्टोरेज एंड कनवर्जन ऑव हाइड्रोजन (HYDEN)
सीएसआईआर-एनसीएल	70.	इनोवेट, डेवलप एंड अप-स्केल माङ्युलर, ऐजल, इन्टेंसीफाइड एंड कॉन्टीन्युअस प्रोसेसिज एंड प्लांट्स (Indus MAGIC)
सीएसआईआर-एनसीएल	71.	केटालिस्ट्स फॉर स्पेशिलिटी <mark>केमिकल्स (CSC)</mark>
सीएसआईआर-एनसीएल	72.	एनकेप्सुलेटिड माइक्रोआर्गेनिज्म्ज एनवायरनमेंटल प्रोटेक्शन (EMEP)
सीएसआईआर-एनसीएल	73.	क्रिएटिंग इंटलेक्चुअल प्रोपर्टी एंड केपेबिलिटीज फॉर द डेवलपमेंट ऑव इम्प्रूव्ड सिक्योरिटी फीचर्स एंड सब्स्ट्रेट्स फॉर द इंडियन करेंसी नोट (FUTURE)

सीएसआईआर-एनसीएल	74.	ए मल्टी-स्केल सिमुलेशन एंड <mark>मॉडलिंग अप्रोच</mark> टू डिजाइनिंग स्मार्ट फंक्शनल
,, , , , , , , , , , , , , , ,		मैटिरियल्स फॉर यूज इन एनर्जी, इलेक्ट्रोकेमिस्ट्री एंड बायो-मिमेटिक्स (MSM)
सीएसआईआर-एनईआईएसटी	75.	नेचुरल प्रोडक्ट्स एज अफोर्डेबल <mark>हेल्थकेयर एजेंट्</mark> स (NaPAHA)
सीएसआईआर-एनईआईएसटी	76.	एनवायरनमेंटल रिसर्च इनेशिएटिव फॉर पेपर एंड प्रोसेस इंडस्ट्री (ERIPP)
सीएसआईआर-एनआईआईएसटी	77.	सस्टेनेबल टेक्नोलॉजीज फॉर द यूटिलाइजेशन ऑव रेयर अर्थ्स (SURE)
सीएसआईआर-एनआईआईएसटी	78.	डेवलपमेंट ऑव फंक्शनल फूड्स एंड देयर फॉर्मुलेशन्स फॉर पोटेंशियल हेल्थ
, , , , , , , , , , , , , , , , , , , ,		बेनेफिट्स ऑव कॉमन मेन (FUNHEALTH)
सीएसआईआर-एनआईआईएसटी	79.	मालिक्यूल्स टू मैटिरियल्स एंड डिवाइ्सेस (M2D)
सीएसआईआर-एनआईआईएसटी	80.	स्पेशिलिटी मैटिरियल्स बेस्ड ऑन इंजीनियर्ड क्लेज (SPECS)
सीएसआईआर-सीएलआरआई	81.	साइंस एण्ड टेक्नोलॉजी रिवोल्यूशन इन लेदर विद ए ग्रीन टच (STRAIT)
सीएसआईआर-सीएलआरआई	82.	रिसर्च इनीशिएटिव फॉर वॉटरलैस टैनिंग (RIWT)
सीएसआईआर-सीएसएमसीआरआई	83.	हाई प्योरिटी सॉल्ट एंड रिकवरी ऑफ वैल्यूएबल मैटल आयन्स फ्रॉम मेरीन रिसोर्सिस
)HPSMC(
सीएसआईआर-आईआईसीटी	84.	डेवलपमेंट ऑव इनोवेटिव टेक्नोलॉजीज़ फॉर स्ट्रेटेजिक फ्लूरोकेमिकल्स (DITSF)
सीएसआईआर-आईआईसीटी	85.	डेवलपमेंट ऑव नोवल वेक्सीन एड्ज्वेंट्स (DENOVA)
सीएसआईआर-एनईआईएसटी	86.	एडवांस्ड पोलियोलेफिन्स (SPIRIT)
सीएसआईआर-एनईआईएसटी	87.	नार्थ ईस्ट एक्प्लोरेशन फॉर फार्मास्युटिकल (NEEP)
सीएसआईआर-आईआईसीटी	88.	अफोर्डेबल केंसर थेरेप्युटिक्स (ACT)
सीएसआईआर-आईआईसीटी	89.	एडवांस ड्रग डिलीवरी सिस्टम (ADD)
सीएसआईआर-सीएलआरआई	90.	डिजाइन इनोवेशन फॉर स्मार्ट मैटिरियल ट्रांस्फॉर्मेशन यीनिंग लैदर लाइफ स्टाइल
		प्रोडेक्ट्स (D'STYLE)
सीएसआईआर-आईआईसीटी	91.	ऑग्मेंटेशन ऑव एनालिटिकल रिसर्च फेसिलिटीज (AARF)
सीएसआईआर-एनसीएल	92.	सेन्टर फॉर सर्फेस एंड इंटरफेस साइंस रिसर्च (CSISR)
सीएसआईआर-एनसीएल	93.	न्युक्लियर मेग्नेटिक रिजोनेंस सेन्टर फॉर एडवांस्ड रिसर्च (NMRCAR)
सीएसआईआर-एनसीएल	94.	नेशनल रिपोजिटरी ऑव मालिक्यूल्स (NORMS)
सीएसआईआर-एनसीएल	95.	अपग्रेडेशन ऑव फेसिलिटीज़/नेशनल रिपोजिटरी ऑव मालिक्यूल्स एंड नेशनल
		कलेक्शन ऑव इंडस्ट्रियल माइक्रो आर्गेनिज्म रिसोर्स सेन्टर (NCIMRC)
सीएसआईआर-एनईआईएसटी	96.	सीएसआईआर एडवांस्ड <mark>एनॉलिटिकल फेसिलिटी फॉ</mark> र नॉर्थ ईस्ट (CAAF-NE)
समूह क्षेत्र: इंजीनियरी विज्ञान		
सीएसआईआर-एनएमएल	97.	डेवलपमेंट ऑव मैग्नीशियम मैटल प्रोडक्शन टेक्नोलॉजी (MPT)
सीएसआईआर-एएमपीआरआई	98.	नोवल एनर्जी इफेक्टिव मेटालिक मैटिरियल्स फॉर ऑटोमोटिव एंड जनरल इंजीनियरिंग एप्लीकेशन (LWM)
सीएसआईआर-सीबीआरआई	99. इंजीनियरिंग ऑव डिजास्टर <mark>मिटीगेशन एंड हे</mark> ल्थ मॉनीटरिंग फॉर सेफ एंड स्मा बिल्ट एनवायरनमेंट (EDMISSIBLE)	
सीएसआईआर-सीजीसीआरआई	100.	डेवलपमेंट ऑव नोवल सीएसआईआर टेक्नोलॉजीज फॉर मैन्युफेक्चरिंग टेलर्ड एंड पेशेंट स्पेसिफिक बायोसिरेमिक इम्प्लांट्स एंड बायोमेडीकल डिवाइसेस एट अफोर्डेबल कॉस्ट (BIOCERAM)

	1	
सीएसआईआर-सीजीसीआरआई	101.	एडवांस्ड सिरेमिक्स मैटिरिय <mark>ल्स एंड कॉम्पोनेंट्</mark> स फॉर एनर्जी एंड स्ट्रक्चरल एप्लीकेशन (CERMESA)
	100	, ,
सीएसआईआर-सीआईएमएफआर	102.	डेवलपमेंट ऑव ए टेक्नोलॉजी <mark>फॉर आप</mark> ्टिमल एक्सट्रेक्शन ऑव लॉक्ड-अप कोल फ्रॉम अंडरग्राउंड माइन्स यूजिंग आर्टिफिशियल पिलर्स (DeCoalArt)
सीएसआईआर-सीआरआरआई	103.	डेवलपमेंट एंड एप्लीकेशन <mark>ऑव टेक्नोलॉजीज</mark> फॉर सस्टेनबल ट्रांसपोर्टेशन (SUSTRANS)
सीएसआईआर-एनएएल	104.	टेक्नोलॉजी सॉल्युशन्स फॉर माइक्रो ए एयर व्हीकल डेवलपमेंट (MAT)
सीएसआईआर-एनईईआरआई	105.	सेंटर ऑव एक्सीलेंस: वेस्ट यूटीलाइजेशन एंड मैनेजमेंट (WUM)
सीएसआईआर-एनएमएल	106.	डेवलपमेंट ऑव जीरो वेस्ट टेक्नोलॉजी फॉर प्रोसेसिंग एंड यूटीलाइजेशन ऑव थर्मल कोल (ZWT-CUP)
सीएसआईआर-एसईआरसी	107.	इनोवेटिव टेक्नोलॉजीज फॉर हेल्थ असेसमेंट एंड डेमेज मिटीगेशन ऑव स्ट्रक्चर्स (I-HEAL)
सीएसआईआर- सीएमईआरआई	108.	रोबोटिक्स एंड माइक्रोमशीन्स (ROμM)
सीएसआईआर- सीएमईआरआई	109.	ऑटोनोमस अन्डरवाटर रोबोटिक्स (UnWaR)
सीएसआईआर-एएमपीआरआई	110.	डिजाइन एंड डेवलपमेंट ऑव थर्मो रिस्पोंसिव एंड मेग्नेटिक शेप मेमोरी मैटिरियल्स एंड डिवाइसेस फॉर इंजीनियरिंग एप्लीकेशन्स (TR&MSMM)
सीएसआईआर-सीजीसीआरआई	111.	लीडरशिप इन स्पेशिलिटी <mark>ग्लास एंड ऑप्टि</mark> कल फाइबर टेक्नोलॉजीज (GLASSFIB)
सीएसआईआर-सीएमईआरआई	112.	इंटेलीजेंट डिवाइसेस एंड स्मार्ट <mark>एक्टुऐटर्स (In</mark> DeSa)
सीएसआईआर-सीआरआरआई	113.	एवेल्युलेशन ऑव इकोनॉमिक <mark>लॉस ड्यू टू</mark> आइडलिंग ऑव व्हीकल्स एट सिग्नालाइज्ड एंड मिटि <mark>गेशन मेज़र्स (ELSIM)</mark>
सीएसआईआर-आईएमएमटी	114.	मिनरल्स टू मैटल्स फॉर सस्टेनेबल प्लेनेट (MINMET)
सीएसआईआर-आईएमएमटी	115.	प्रोसेसिंग ऑव नेचुरल जेमस्टोन्स फॉर एस्थेटिक इम्प्रूवमेंट एंड वेल्यू एडीशन (PNG)
सीएसआईआर-एसईआरसी	116.	इंजीनियरिंग सस्टेनेबल मैटिरियल्स एंड स्ट्रक्चर्स एक्शन प्लान । : सस्टेनेबिलिटी थ्रू इको बेलेंसिंग (SUSMAS)
सीएसआईआर-एसईआरसी	117.	इंजीनियरिंग सस्टेनेबल मैटिरियल्स एंड स्ट्रक्चर्स एक्शन प्लान ॥ : सस्टेनेबिलिटी श्रू नैनो टेक्नोलॉजी एंड बायो मिमेटिक्स (eNano-Tics)
सीएसआईआर-एनएएल	118.	एवियोनिक्स एंड फलाइ <mark>ट कंट्रोल्स सिविल एय</mark> रोस्पेस टेक्नोलॉजीज (AFCCAT)
सीएसआईआर-एनएएल	119.	एडवांस्ड स्ट्रक्चरल टेक्नोलॉ <mark>जीज फॉर एयर</mark> क्राफ्ट (ASTA)
सीएसआईआर- एनएएल	120.	एयरोडायनामिक्स एंड प्रोपल्शन टेक्नोलॉजीज फॉर नेक्स्ट जनरेशन सिविल एयरक्राफ्ट (ADPR)
सीएसआईआर-सीबीआरआई	121.	इनोवेटिव मटीरियल्स एंड टेक्नोलॉजीज फॉर नेक्स्ट जनरेशन ग्रीन बिल्डिंग्स (INMATE-NGGB)
सीएसआईआर-सीआईएमएफआर	122.	डेवलपमेंट ऑव अंडरग्राउं <mark>ड कोल गैसीफिकेशन</mark> टेक्नोलॉजी इन इंडिया (CoalGasUrja)

2014-15

सीएसआईआर- सीआईएमएफआर	123.	डेवलपमेंट ऑव सूटेबल डिजा <mark>इन मेथडोलॉजी फ</mark> ॉर एक्स्ट्रैक्शन ऑव कोल एट ग्रेटर
		डेप्थ्स (> 300m) फॉर इंडियन ज्योमाइनिंग कंडीशंस (DeepCoal)
सीएसआईआर-सीआरआरआई	124.	डेवलपमेंट ऑव इंडियन हाइवे केपेसिटी मैनुअल (Indo-HCM)
सीएसआईआर-एनईईआरआई	125.	नेशनल क्लीन एयर मिशन (NACM)
सीएसआईआर- एनईईआरआई	126.	क्लीन वाटरः संस्टेनेबल ऑप्शंस (Clean Water)
सीएसआईआर-आईएमएमटी	127.	सेंटर फॉर स्पेशल मैटिरियल्स (CSM)
सीएसआईआर- एनएएल	128.	ट्रांसपोर्ट एयरक्राफ्ट डिजाइन ब्यूरो (TADB)
सीएसआईआर-एनएएल	129.	ऑग्मेंटेशन एंड रिफर्बिशमेंट ऑव नेशनल ट्राइसोनिक एयरोडायनेमिक फेसिलिटीज (NTAF)
समूह क्षेत्र: सूचना विज्ञान		
सीएसआईआर-एनआई <mark>एससीएआईआर</mark>	130.	सीएसआईआर वाइड कंसॉर्टियम एक्सेस टू ऑनलाइन इन्फॉरमेशन रिसोर्सिस (NKRC)
सीएसआईआर-टीकेडीएल	131.	एनालिसिस एंड मानीटरिंग <mark>ऑव पेटेंट एप्लीकेशंस इन इंटरनेशनल पेटेंट ऑ</mark> फिस फॉर प्रिवेंटिंग मिसएप्रोप्रिएशन ऑव इंडियाज ट्रेडीशनल नॉलेज (HCP006)
सीएसआईआर-एनआईएससीएआईआर	132.	सीएसआईआर नॉलेज गेटवे एंड ओपन सोर्स प्राइवेट क्लाउड इन्फ्रास्ट्रक्चर (KNOWGATE)
सीएसआईआर-एनआईएसटी <mark>एडीएस</mark>	133.	इंडियन एस एंड टी एंड इनोवेशन पॉलिसी (ISTIP)
सीएसआईआर-यूआरडीआईपी	134.	पैटइंफोर्मेटिक्स (Patinformatics)
सीएसआईआर-यूआरडीआईपी	135.	केमबायोइंफोर्मेटिक्स फॉर <mark>ड्रग डिस्कवरी (ISC</mark> 0203)
सीएसआईआर-यूआरडीआईपी	136.	ओपन साइंस एंड इनोवेशन इन्फ्रास्ट्रक्चर (OSOII)
सीएसआईआर-टीकेडीएल	137.	ट्रेडीशनल नॉलेज डिजिटल लाइब्रेरी 2020 (Enhanced TKDL-)
सीएसआईआर-सीएमएमएसीएस	138.	एडवांस्ड़ रिसर्च इन इंजीनियरिंग एंड अर्थ साइंसेज : डाटा इंटेंसिव मॉडलिंग एंड क्राउड सोर्सिंग एप्रोच (ARIEES)
समूह क्षेत्र: भौतिक विज्ञान		
सीएसआईआर-सीईईआरआई	139.	एडवांस्ड फेसिलिटी फॉर नैनो इलेक्ट्रोनिक्स (AFNE)
सीएसआईआर– सीईईआरआई	140.	वेरी हाई पॉवर माइक्रोवेव ट्यूब्स: डिजाइन एंड डेवलपमेंट कैपेबिलिटीज (MTDDC)
सीएसआईआर-सीईईआरआई	141.	रिसर्च इनीशिएटिव ऑन नैनो डिवाइसिज एंड नैनो-सेंसर्स (R-Nano)
सीएसआईआर-सीएसआईओ	142.	एडवांस इन्स्ट्रुमेंटेशन सॉल्युशन्स फॉर हेल्थ केयर एंड एग्रो-बेस्ड एप्लीकेशन्स (ASHA)
सीएसआईआर-एनजीआरआई	143.	जियोडायनेमिक एंड अर्थक्वेक जेनरेटिंग प्रोसेसिस इन एनई इंडिया एंड अंडमान सबडक्शन जोन (GENIAS)
सीएसआईआर- एनआईओ	144.	ओशन साइंस टुवर्ड्स फोरकास्टिंग इंडियन मेरीन लिविंग रिसोर्स पोटेंशियल (Ocea
8: :		Finder)

खः दसवीं एवं ग्यारहवीं पंचवर्षीय योजना से पिछली परियोजनाओं की सूची

2014-15

		2014-13
सीएसआईआर-एनआईओ	145.	जियोलॉजीकल प्रोसेसिज <mark>इन द इंडियन ओशन-अं</mark> डरस्टेंडिंग द इनपुट फ्लक्सेस, सिंक्स एंड पेलेओशनोग्राफी (GEOSINKS)
सीएसआईआर-एनआईओ	146.	ज्यो-साइंटिफिक इन्वेस्टिगेशंस फॉर डिसाइफरिंग द अर्थ्स इंटरनल प्रोसेसेस एंड एक्सप्लोरेशन ऑव एनर्जी रिसोर्सेज (GEOSCAPE)
सीएसआईआर-एनआईओ	147.	इंडियन एक्वेटिक ईकोसिस्टम्स: इंपैक्ट ऑव डी- ऑक्सीजेनेशन, यूट्रोफिकेशन एंड
। साएसआइआर-एनआइआ	147.	एसिडिफिकेशन (INDIAS IDEA)
सीएसआईआर-एनपीएल	148.	डेवलपमेंट ऑव एडवांस्ड म <mark>टीरियल्स फॉर नेक्स्</mark> ट जेनरेशन एनर्जी-एफिशियंट डिवाइसेज (D-NEED)
सीएसआईआर-एनपीएल	149.	एडवांस्ड क्वांटम रिसर्च एंड इन्नोवेशन विद अल्ट्रा स्मॉल सिस्टम्स (AQuaRIUS)
सीएसआईआर-एनपीएल	150.	मेजरमेंट फॉर इन्नोवेशन इन साइंस एंड टेक्नोलॉजी (MIST)
सीएसआईआर-एनपीएल	151.	प्रोबिंग द चेंजिंग एटमास्फियर एंड इट्स इपैक्ट्स इन इन्डो-गैंगेटिक प्लेन्स (IGP) एंड हिमालयन रीजन्स (AIM.IGPHiM)
सीएसआईआर–सीईईआरआई	152.	एडवांस्ड माइक्रोसेंसर्स एंड माइक्रोसिस्टम्स: डिजाइन, डेवलपमेंट एंड एप्लीकेशन्स (MicroSensys)
सीएसआईआर-सीएसआईओ	153.	ऑप्टो-मेकट्रोनिक्स टेक्नोलॉजीज फॉर नेक्स्ट जेनरेशन सेंसर्स एंड एप्लीकेशन्स (OMEGA)
सीएसआईआर-एनजीआरआई	154.	हेजार्ड ड्यू टू अर्थक्वेक्स एंड सुनामी इन द इंडियन रीजन (HEART)
सीएसआईआर-एनजीआरआई	155.	इंडिया डीप अर्थ एक्सप्लोरेशन प्रोग्राम (INDEX)
सीएसआईआर-एनजीआरआई	156.	शैलो सबसर्फेस इमेजिंग ऑव इंडिया फॉर रिसोर्स एक्सप्लोरेशन (SHORE)
सीएसआईआर-एनआईओ	157.	एनालिसिस एंड हार्नेसिंग ऑव मरीन बायोडाइवर्सिटी फॉर बायोरेमेडिएशन ऑव एक्वाकल्चर एंड इंडस्ट्रियल एफ्ल्युअंट्स (MARINEBIOTE)
सीएसआईआर-एनपीएल	158.	रिसर्च एंड डेवलपमेंट ऑन सिंगल ट्रैप्ड आयन बेज्ड फ्रीक्वेंसी स्टैंडर्ड (STIOS)
नोडल प्रयोगशाला	τ	। परियोजना का नाम
सीएसआईआर–सीडीआरआई		1. सेटिंग अप ऑफ–द वर्ल्ड क्लास ड्रग रिसर्च इंस्टिट्यूट#
सीएसआईआर-सीएमएमएसीएस		2. सेटिंग अप स्टेट-ऑफ-द-आर्ट मल्टी टेराफ्लॉप हाई परफॉर्मेंस कंप्यूटिंग (एचपीसी) फैसिलिटी*
सीएसआईआर-सीईसी <mark>आरआई</mark>		3. इन्नोवेटिव साल्यूशंस फॉर सोलर एनर्जी स्टोरेज*
सीएसआईआर-एनपीएल		4. नावल एप्रोचेज फॉर सो <mark>लर एनर्जी कंवर्जन*</mark>
सीएसआईआर-एनपीएल		s. एफिशियंट सिलिकॉन फोटो <mark>वोल्टिक्स विद स्मा</mark> र्ट इलेक्ट्रॉनिक्स एंड लाइटर्निंग सिस्टम्स*

॥ #10वीं पंचवर्षीय योजना परियोजना

^{*}ये ट्रांस-प्लान इनीशिएटिव के रूप में प्रतिपादित परियोजनाएं हैं।

2014-15

वैज्ञानिक तथा औद्योगिक अनुसंधान परिषद के प्रतिष्ठान

जीवविज्ञान

सीएसआईआर-सीसीएमबी सीएसआईआर-सीडीआरआई सीएसआईआर-सीएफटीआरआई सीएसआईआर-सीआईएमएपी सीएसआईआर-आईजीआईबी सीएसआईआर-आईएचबीटी सीएसआईआर-आईआईसीबी सीएसआईआर-आईआईपमिएसआईआर-आईएमटीईसीएच सीएसआईआर-आईएमटीईसीएच सीएसआईआर-आईएमटीईसीएच सीएसआईआर-आईआईटीआर सीएसआईआर-एनबीआरआई

केन्द्रीय खाद्य प्रौद्योगिकी अनुसंघान, मैसूर केन्द्रीय औषधीय एवं सगंध पौधा संस्थान, लखनऊ जीनोमिकी और समवेत जीवविज्ञान संस्थान, दिल्ली हिमालय जैवसंपदा प्रौद्योगिकी संस्थान, पालमपुर भारतीय रासायनिक जीवविज्ञान संस्थान, कोलकाता भारतीय समवेत औषध संस्थान, जम्मू सूक्ष्मजीव प्रौद्योगिकी संस्थान, चण्डीगढ़ भारतीय विषविज्ञान अनुसंधान संस्थान, लखनऊ राष्ट्रीय वनस्पति अनुसंधान संस्थान, लखनऊ

कोशिकीय एवं आणविक जीवविज्ञान केन्द्र, हैदराबाद

केन्द्रीय औषधि अनुसंधान संस्थान, लखनऊ

रसायन विज्ञान

सीएसआईआर-सीएलआरआई सीएसआईआर-सीईसीआरआई सीएसआईआर-सीएसएमसीआरआई सीएसआईआर-सीआईएमएफआर सीएसआईआर-आईआईसीटी सीएसआईआर-आईआईपी सीएसआईआर-एनसीएल सीएसआईआर-एनईआईएसटी सीएसआईआर-एनईआईएसटी केन्द्रीय चर्म अनुसंधान संस्थान, चेन्न्ई केन्द्रीय विद्युतरसायन अनुसंधान संस्थान, कारैकुडी केन्द्रीय नमक व समुद्री रसायन अनुसंधान संस्थान, भावनगर केन्द्रीय खनन एवं ईंधन अनुसंधान संस्थान, धनबाद भारतीय रासायनिक प्रौद्योगिकी संस्थान, हैदराबाद भारतीय पेट्रोलियम संस्थान, देहरादून राष्ट्रीय रासायनिक प्रयोगशाला, पुणे उत्तर-पूर्व विज्ञान तथा प्रौद्योगिकी संस्थान, जोरहाट राष्ट्रीय अंतर्विषयी विज्ञान तथा प्रौद्योगिकी संस्थान, तिरुवनन्तप्रम

इंजीनियरी विज्ञान

सीएसआईआर-एमपीआरआई सीएसआईआर-सीबीआरआई सीएसआईआर-सीजीसीआरआई सीएसआईआर-सीणमईआरआई सीएसआईआर-सीआरआरआई सीएसआईआर-आईएमएमटी सीएसआईआर-एनएएल सीएसआईआर-एनएएल सीएसआईआर-एनएमएल सीएसआईआर-एनएमएल प्रगत पदार्थ तथा प्रक्रम अनुसंधान संस्थान, भोपाल केन्द्रीय भवन अनुसंधान संस्थान, रुड़की केन्द्रीय कांच एवं सिरामिक अनुसंधान संस्थान, कोलकाता केन्द्रीय यांत्रिक अभियांत्रिकी अनुसंधान संस्थान, दुर्गापुर केन्द्रीय सड़क अनुसंधान संस्थान, नई दिल्ली खनिज एवं पदार्थ प्रौद्योगिकी संस्थान, भुवनेश्वर राष्ट्रीय वांतरिक्ष प्रयोगशालाएं, बेंगलुरू राष्ट्रीय पर्यावरण अभियांत्रिकी अनुसंधान संस्थान, नागपुर राष्ट्रीय धातुकर्म प्रयोगशाला, जमशेदपुर संरचना अभियांत्रिकी अनुसंधान केंद्र, चेन्नई

सूचना विज्ञान

सीएसआईआर-एनआईएससीएआईआर सीएसआईआर-एनआईएसटीएडीएस सीएसआईआर-4-पीआई राष्ट्रीय विज्ञान संचार एवं सूचना स्रोत संस्थान, नई दिल्ली राष्ट्रीय विज्ञान, प्रौद्योगिकी और विकास अध्ययन संस्थान, नई दिल्ली फोर्थ पैराडाइम इंस्टिट्यूट, बेंगलूरू

भौतिक विज्ञान

सीएसआईआर-सीईईआरआई सीएसआईआर-एनजीआरआई सीएसआईआर-एनजीआरआई सीएसआईआर-एनआईओ सीएसआईआर-एनपीएल केन्द्रीय इलेक्ट्रॉनिकी अभियांत्रिकी अनुसंधान संस्थान, पिलानी केन्द्रीय वैज्ञानिक उपकरण संगठन, चण्डीगढ राष्ट्रीय भूभौतिकीय अनुसंधान संस्थान, हैदराबाद राष्ट्रीय समुद्रविज्ञान संस्थान, गोवा राष्ट्रीय भौतिक प्रयोगशाला, नई दिल्ली

2014-15

इकाइयां

सीएसआईआर-एचआरडीसी सीएसआईआर-टीकेडीएल सीएसआईआर-यूआरडीआईपी सीएसआईआर-ओएसडीडी सीएसआईआर-त्रेसूत्रा

नवोन्नमेष कॉम्प्लेक्स:

नवोन्नमेष कॉम्प्लेक्स, चेन्नै नवोन्नमेष कॉम्प्लेक्स, कोलकाता नवोन्नमेष कॉम्प्लेक्स, मुम्बई मानव संसाधन विकास केन्द्र, गाजियाबाद परम्परागत ज्ञान डिजिटल लाइब्रेरी, गाजियाबाद सूचना उत्पाद अनुसंधान एवं विकास यूनिट, पुणे ओपन सोर्स ड्रग डिस्कवरी, नई दिल्ली ट्रांस्लेशनल रिसर्च और इन्नोवेटिव साइंस थ्रू आयुर्जिनोमिक्स

2014-15

सीएसआईआर: गैर-रणनीतिक भाग में स्वाबलम्बन हेतु स्वातन्त्र्योत्तर भारतीय नवोन्मेष प्रणाली

निम्न की कुल संख्याः सीएसआईआर संस्थान:38 सीएसआईआर इकाइयां: 5 सीएसआईआर विस्तार केन्द्र: 39

- जीवविज्ञान
- रसायन विज्ञान
- इंजीनियरी विज्ञान
- सूचना विज्ञान
- भौतिक विज्ञान
- सीएसआईआर इकाइयां

Designed and Printed at CSR-NBCAR, New Debt

सीएसआईआर : गैर-रणनीतिक क्षेत्रवार में आत्मनिर्भरता हेतु स्वतंत्रोत्तर भारतीय नवोन्मेष प्रणाली

